We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Global epigenetic profiling in bladder cancer

    Ewa Dudziec

    The Institute for Cancer Studies & The Academic Urology Unit, University of Sheffield, UK: Institute for Cancer Studies, G Floor, The Medical School, Sheffield University, Beech Hill Road, Sheffield, S10 2RX, UK

    ,
    John R Goepel

    Department of Pathology, Royal Hallamshire Hospital, Sheffield, UK

    &
    Published Online:https://doi.org/10.2217/epi.10.71

    Urothelial carcinoma of the bladder is a common disease that arises from two distinct molecular pathways, and is one of the most expensive malignancies to manage. Accurate biomarkers that could detect tumor recurrence or predict future progression would improve the care of patients and reduce the cost of managing the disease. DNA methylation, histone modification and ncRNA expression are important epigenetic mechanisms that regulate the expression of genes. These regulatory mechanisms are altered with bladder cancer, and therefore, represent potential biomarkers and therapeutic targets owing to the reversible nature of their modification. In this article, we will discuss these epigenetic changes in bladder cancer and assess their clinical potential.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J. Clin.60(5),277–300 (2010).
    • Avritscher EB, Cooksley CD, Grossman HB et al.: Clinical model of lifetime cost of treating bladder cancer and associated complications. Urology68(3),549–553 (2006).
    • Sangar VK, Ragavan N, Matanhelia SS, Watson MW, Blades RA: The economic consequences of prostate and bladder cancer in the UK. BJU Int.95(1),59–63 (2005).
    • PJ Goebell , Knowles MA: Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urol. Oncol.28(4),409–428 (2010).▪ Describes and summarizes genetic alterations reported in bladder cancer in the current two-pathway model.
    • Catto JW, Rosario DJ: The road to cystectomy: who, when and why? EAU update series. Eur. Urol.3(4),171–179 (2005).
    • Catto JW, Yates DR, Rehman I et al.: Behavior of urothelial carcinoma with respect to anatomical location. J. Urol.177(5),1715–1720 (2007).
    • Stein JP, Lieskovsky G, Cote R et al.: Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J. Clin. Oncol.19(3),666–675 (2001).
    • KnowlesMA: Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis27(3),361–373 (2006).
    • Dhawan D, Hamdy FC, Rehman I et al.: Evidence for the early onset of aberrant promoter methylation in urothelial carcinoma. J. Pathol.209(3),336–343 (2006).
    • 10  Dyrskjot L, Kruhoffer M, Thykjaer T et al.: Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res.64(11),4040–4048 (2004).
    • 11  van Oers JM, Zwarthoff EC, Rehman I et al.: FGFR3 mutations indicate better survival in invasive upper urinary tract and bladder tumors. Eur. Urol.55(3),650–657 (2009).
    • 12  Jebar AH, Hurst CD, Tomlinson DC et al.: FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene24(33),5218–5225 (2005).
    • 13  Zhang ZT, Pak J, Huang HY et al.: Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene20(16),1973–1980 (2001).
    • 14  Zhang ZT, Pak J, Shapiro E, Sun TT, Wu XR: Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res.59(14),3512–3517 (1999).
    • 15  Spruck CH, Ohneseit PF, Gonzalez-Zulueta M et al.: Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res.54(3),784–788 (1994).
    • 16  Catto JW, Miah S, Owen HC et al.: Distinct miRNA alterations characterize high- and low-grade bladder cancer. Cancer Res.69(21),8472–8481 (2009).▪▪ Reports that altered miRNA expression occurs in a tumor phenotype-specific manner and can predict disease progression. Examines the role of DNA methylation in miRNA downregulation.
    • 17  Yates DR, Rehman I, Abbod MF et al.: Promoter hypermethylation identifies progression risk in bladder cancer. Clin. Cancer Res.13(7),2046–2053 (2007).▪ Describes aberrant DNA methylation as reliable predictor of tumor progression in bladder cancer.
    • 18  Dyrskjot L, Ostenfeld MS, Bramsen JB et al.: Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res.69(11),4851–4860 (2009).▪▪ Reports that altered miRNA expression occurs in a tumor phenotype-specific manner and can predict disease progression.
    • 19  Serizawa RR, Ralfkiaer U, Steven K et al.: Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events. Int J. Cancer doi: 10.1002/ijc.25651 (2010) (Epub ahead of print).
    • 20  Weisenberger DJ, Siegmund KD, Campan M et al.: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet.38(7),787–793 (2006).
    • 21  Ordway JM, Williams K, Curran T: Transcription repression in oncogenic transformation: common targets of epigenetic repression in cells transformed by Fos, Ras or Dnmt1. Oncogene23(21),3737–3748 (2004).
    • 22  Watt F, Molloy PL: Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev.2(9),1136–1143 (1988).
    • 23  Nan X, Campoy FJ, Bird A: MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell88(4),471–481 (1997).
    • 24  Eden A, Gaudet F, Waghmare A, Jaenisch R: Chromosomal instability and tumors promoted by DNA hypomethylation. Science300(5618),455 (2003).
    • 25  Gaudet F, Hodgson JG, Eden A et al.: Induction of tumors in mice by genomic hypomethylation. Science300(5618),489–492 (2003).
    • 26  Estecio MR, Gharibyan V, Shen L et al.: LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS ONE2(5),e399 (2007).
    • 27  Prusty BK, zur Hausen H, Schmidt R, Kimmel R, de Villiers EM: Transcription of HERV-E and HERV-E-related sequences in malignant and non-malignant human haematopoietic cells. Virology382(1),37–45 (2008).
    • 28  Lamprecht B, Walter K, Kreher S et al.: Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med.16(5),571–579 (2010).
    • 29  Wolff EM, Byun HM, Han HF et al.: Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet.6(4),e1000917 (2010).▪ Demonstrates that hypomethylation of retrotransposons causes altered gene expression in bladder cancer.
    • 30  Buscher K, Hahn S, Hofmann M et al.: Expression of the human endogenous retrovirus-K transmembrane envelope, Rec and Np9 proteins in melanomas and melanoma cell lines. Melanoma Res.16(3),223–234 (2006).
    • 31  Ishida T, Obata Y, Ohara N et al.: Identification of the HERV-K gag antigen in prostate cancer by SEREX using autologous patient serum and its immunogenicity. Cancer Immun.8,15 (2008).
    • 32  Wang-Johanning F, Liu J, Rycaj K et al.: Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int. J. Cancer.120(1),81–90 (2007).
    • 33  Dudziec E, Miah S, Choudhry H et al.: Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin. Cancer Res. (2010) (Epub ahead of print).
    • 34  Marsit CJ, Houseman EA, Christensen BC et al.: Identification of methylated genes associated with aggressive bladder cancer. PLoS ONE5(8),e12334 (2010).
    • 35  Wolff EM, Chihara Y, Pan F et al.: Unique DNA methylation patterns distinguish superficial and invasive bladder cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res.70(20),8169–8178 (2010).▪▪ Desribes unique DNA methylation patterns in different types of tumors and highlights changes occuring in normal bladders with cancers.
    • 36  Catto JW, Hartmann A, Stoehr R et al.: Multifocal urothelial cancers with the mutator phenotype are of monoclonal origin and require panurothelial treatment for tumor clearance. J. Urol.175(6),2323–2330 (2006).
    • 37  Catto JW, Azzouzi AR, Rehman I et al.: Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma. J. Clin. Oncol.23(13),2903–2910 (2005).
    • 38  Cebrian V, Alvarez M, Aleman A et al.: Discovery of myopodin methylation in bladder cancer. J. Pathol.216(1),111–119 (2008).
    • 39  Graff JR, Gabrielson E, Fujii H, Baylin SB, Herman JG: Methylation patterns of the E-cadherin 5´ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J. Biol Chem.275(4),2727–2732 (2000).
    • 40  Byun HM, Wong HL, Birnstein EA et al.: Examination of IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res.67(22),10753–10758 (2007).
    • 41  Wilhelm CS, Kelsey KT, Butler R et al.: Implications of LINE1 methylation for bladder cancer risk in women. Clin. Cancer Res.16(5),1682–1689 (2010).
    • 42  Choi SH, Worswick S, Byun HM et al.: Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer. Int J. Cancer.125(3),723–729 (2009).
    • 43  Moore LE, Pfeiffer RM, Poscablo C et al.: Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder Cancer Study: a case–control study. Lancet Oncol.9(4),359–366 (2008).
    • 44  Kouzarides T: Chromatin modifications and their function. Cell.128(4),693–705 (2007).
    • 45  Nguyen CT, Weisenberger DJ, Velicescu M et al.: Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2´-deoxycytidine. Cancer Res.62(22),6456–6461 (2002).
    • 46  Wiencke JK, Zheng S, Morrison Z, Yeh RF: Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells. Oncogene27(17),2412–2421 (2008).
    • 47  Vakoc CR, Mandat SA, Olenchock BA, Blobel GA: Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol. Cell19(3),381–391 (2005).
    • 48  Squazzo SL, O’Geen H, Komashko VM et al.: Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res.16(7),890–900 (2006).
    • 49  Kondo Y, Shen L, Cheng AS et al.: Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat. Genet.40(6),741–750 (2008).
    • 50  Weikert S, Christoph F, Kollermann J et al.: Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int. J. Mol. Med.16(2),349–353 (2005).
    • 51  Varambally S, Dhanasekaran SM, Zhou M et al.: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419(6907),624–629 (2002).
    • 52  Kleer CG, Cao Q, Varambally S et al.: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA100(20),11606–11611 (2003).
    • 53  Cao Q, Yu J, Dhanasekaran SM et al.: Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene27(58),7274–7284 (2008).
    • 54  Ou JN, Torrisani J, Unterberger A et al.: Histone deacetylase inhibitor Trichostatin A induces global and gene-specific DNA demethylation in human cancer cell lines. Biochem. Pharmacol.73(9),1297–1307 (2007).
    • 55  Sachs MD, Ramamurthy M, Poel H et al.: Histone deacetylase inhibitors upregulate expression of the coxsackie adenovirus receptor (CAR) preferentially in bladder cancer cells. Cancer Gene Ther.11(7),477–486 (2004).
    • 56  Selbach M, Schwanhausser B, Thierfelder N et al.: Widespread changes in protein synthesis induced by microRNAs. Nature455(7209),58–63 (2008).
    • 57  Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet.10(10),704–714 (2009).
    • 58  Gottardo F, Liu CG, Ferracin M et al.: Micro-RNA profiling in kidney and bladder cancers. Urol. Oncol.25(5),387–392 (2007).
    • 59  Valadi H, Ekstrom K, Bossios A et al.: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol.9(6),654–659 (2007).
    • 60  Hanke M, Hoefig K, Merz H et al.: A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol.28(6),655–661 (2010).▪ Describes the upregulation of urinary miRNAs as potential biomarker to discriminate patients with cancer.
    • 61  Saito Y, Liang G, Egger G et al.: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell9(6),435–443 (2006).▪▪ Fisrt report demonstrating epigenetic regulation of miRNA in bladder cancer.
    • 62  Saito Y, Friedman JM, Chihara Y et al.: Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem. Biophys. Res. Commun.379(3),726–731 (2009).
    • 63  Wiklund ED, Bramsen JB, Hulf T et al.: Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int. J. Cancer (2010) (Epub ahead of print).
    • 64  Fabbri M, Garzon R, Cimmino A et al.: MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B Proc. Natl Acad. Sci. USA104(40),15805–15810 (2007).
    • 65  Friedman JM, Liang G, Liu CC et al.: The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res.69(6),2623–2629 (2009).
    • 66  Brunk BP, Goldhamer DJ, Emerson CC Jr: Regulated demethylation of the myoD distal enhancer during skeletal myogenesis. Dev. Biol.177(2),490–503 (1996).
    • 67  Fenaux P, Mufti GJ, Hellstrom-Lindberg E et al.: Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, Phase III study. Lancet Oncol.10(3),223–232 (2009).
    • 68  Gore SD, Baylin S, Sugar E et al.: Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res.66(12),6361–6369 (2006).
    • 69  Kim MS, Blake M, Baek JH et al.: Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res.63(21),7291–7300 (2003).
    • 70  Hauswald S, Duque-Afonso J, Wagner MM et al.: Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resistance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter genes. Clin. Cancer Res.15(11),3705–3715 (2009).
    • 71  Cheng JC, Weisenberger DJ, Gonzales FA et al.: Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol. Cell Biol.24(3),1270–1278 (2004).
    • 72  Christoph F, Kempkensteffen C, Weikert S et al.: Methylation of tumor suppressor genes APAF-1 and DAPK-1 and in vitro effects of demethylating agents in bladder and kidney cancer. Br. J. Cancer.95(12),1701–1707 (2006).
    • 73  Aleman A, Cebrian V, Alvarez M et al.: Identification of PMF1 methylation in association with bladder cancer progression. Clin. Cancer Res.14(24),8236–8243 (2008).
    • 74  Huang Y, Stewart TM, Wu Y et al.: Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin. Cancer Res.15(23),7217–7228 (2009).
    • 75  Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR: Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene29(4),576–588 (2010).
    • 76  Tan J, Yang X, Zhuang L et al.: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev.21(9),1050–1063 (2007).
    • 77  Gupta R, Nagarajan A, Wajapeyee N: Advances in genome-wide DNA methylation analysis. Biotechniques49(4),iii–xi (2010).
    • 78  Pomraning KR, Smith KM, Freitag M: Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods47(3),142–150 (2009).
    • 79  Park PJ: ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet.10(10),669–680 (2009).
    • 80  Irizarry RA, Ladd-Acosta C, Wen B et al.: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet.41(2),178–186 (2009).
    • 81  Lister R, Pelizzola M, Dowen RH et al.: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature462(7271),315–322 (2009).
    • 82  Kim WJ, Kim EJ, Jeong P et al.: RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res.65(20),9347–9354 (2005).
    • 83  Dominguez G, Carballido J, Silva J et al.: p14ARF promoter hypermethylation in plasma DNA as an indicator of disease recurrence in bladder cancer patients. Clin. Cancer Res.8(4),980–985 (2002).
    • 84  Chan MW, Chan LW, Tang NL et al.: Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin. Cancer Res.8(2),464–470 (2002).
    • 85  Hoque MO, Begum S, Topaloglu O et al.: Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J. Natl Cancer Inst.98(14),996–1004 (2006).
    • 86  Friedrich MG, Chandrasoma S, Siegmund KD et al.: Prognostic relevance of methylation markers in patients with non-muscle invasive bladder carcinoma. Eur. J. Cancer.41(17),2769–2778 (2005).
    • 87  Ellinger J, El Kassem N, Heukamp LC et al.: Hypermethylation of cell-free serum DNA indicates worse outcome in patients with bladder cancer. J. Urol.179(1),346–352 (2008).
    • 88  Maruyama R, Toyooka S, Toyooka KO et al.: Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features. Cancer Res.61(24),8659–8663 (2001).
    • 89  Abbosh PH, Wang M, Eble JN et al.: Hypermethylation of tumor-suppressor gene CpG islands in small-cell carcinoma of the urinary bladder. Mod. Pathol.21(3),355–362 (2008).
    • 90  Yang J, Xu Z, Li J et al.: XPC epigenetic silence coupled with p53 alteration has a significant impact on bladder cancer outcome. J. Urol.184(1),336–343 (2010).
    • 91  Friedrich MG, Weisenberger DJ, Cheng JC et al.: Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients. Clin. Cancer Res.10(22),7457–7465 (2004).
    • 92  Marsit CJ, Houseman EA, Schned AR, Karagas MR, Kelsey KT: Promoter hypermethylation is associated with current smoking, age, gender and survival in bladder cancer. Carcinogenesis28(8),1745–1751 (2007).
    • 93  Sathyanarayana UG, Maruyama R, Padar A et al.: Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes. Cancer Res.64(4),1425–1430 (2004).
    • 94  Aleman A, Adrien L, Lopez-Serra L et al.: Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays. Br. J. Cancer98(2),466–473 (2008).
    • 95  Tada Y, Wada M, Taguchi K et al.: The association of death-associated protein kinase hypermethylation with early recurrence in superficial bladder cancers. Cancer Res.62(14),4048–4053 (2002).
    • 96  Chiyomaru T, Enokida H, Kawakami K et al.: Functional role of LASP1 in cell viability and its regulation by microRNAs in bladder cancer. Urol. Oncol. (2010) (Epub ahead of print).
    • 97  Cao Y, Yu SL, Wang Y et al.: MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumor Biol.32(1),179–188 (2010).
    • 98  Ichimi T, Enokida H, Okuno Y et al.: Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J. Cancer.125(2),345–352 (2009).
    • 99  Lodygin D, Tarasov V, Epanchintsev A et al.: Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle7(16),2591–2600 (2008).
    • 100  Huang L, Luo J, Cai Q et al.: MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int. J. Cancer doi: 10.1002/ijc.25509 (2010) (Epub ahead of print).
    • 101  Chiyomaru T, Enokida H, Tatarano S et al.: miR-145 and miR-133a function as tumor suppressors and directly regulate FSCN1 expression in bladder cancer. Br. J. Cancer102(5),883–891 (2010).
    • 102  Ostenfeld MS, Bramsen JB, Lamy P et al.: miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene29(7),1073–1084 (2010).
    • 103  Adam L, Zhong M, Choi W et al.: miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin. Cancer Res.15(16),5060–5072 (2009).
    • 104  Lu Q, Lu C, Zhou GP et al.: MicroRNA-221 silencing predisposed human bladder cancer cells to undergo apoptosis induced by TRAIL. Urol. Oncol. (6),635–641 (2009).
    • 201  Contains the reference sequence and working draft assemblies for a large collection of genomes http://genome.ucsc.edu