We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Special Report

DNA methylation and miRNA expression profiling in childhood B-cell acute lymphoblastic leukemia

    Zac Chatterton*

    Developmental Epigenetics, Early Development & Disease Theme, Murdoch Children’s Research Institute, Melbourne, Australia

    Department of Pediatrics, University of Melbourne, Melbourne, Australia

    *These authors contributed equally to this manuscript

    Search for more papers by this author

    ,
    Leah Morenos*

    Developmental Epigenetics, Early Development & Disease Theme, Murdoch Children’s Research Institute, Melbourne, Australia

    Department of Pediatrics, University of Melbourne, Melbourne, Australia

    *These authors contributed equally to this manuscript

    Search for more papers by this author

    ,
    Richard Saffery

    Developmental Epigenetics, Early Development & Disease Theme, Murdoch Children’s Research Institute, Melbourne, Australia

    Department of Pediatrics, University of Melbourne, Melbourne, Australia

    ,
    Jeffrey M Craig

    Developmental Epigenetics, Early Development & Disease Theme, Murdoch Children’s Research Institute, Melbourne, Australia

    Department of Pediatrics, University of Melbourne, Melbourne, Australia

    ,
    David Ashley

    Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, Australia

    &
    Published Online:https://doi.org/10.2217/epi.10.39

    Acute lymphoblastic leukemia (ALL) is the most common cancer in children in the modern world. Recent efforts in characterizing the genetic contribution to this disease through uncovering gene mutations, deletions and structural variation by genome-scale methods have only accounted for a modest proportion of children with ALL. This suggests that either further genetic contributions to ALL have yet to be characterized or other factors, such as epigenetic aberrations are involved. A number of DNA methylation and miRNA profiling studies have investigated the role of both in childhood ALL. Here, we review these profiling efforts, summarize their major findings and speculate as to what the future may hold.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Bird A: Perceptions of epigenetics. Nature447(7143),396–398 (2007).▪▪ Recent viewpoint on the current status of the field of epigenetics with respect to DNA methylation.
    • Clark SJ, Harrison J, Frommer M: CpNpG methylation in mammalian cells. Nat. Genet.10(1),20–27 (1995).▪ First description of non-CpG methylation in mammalian cells.
    • Lister R, Pelizzola M, Dowen RH et al.: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature462(7271),315–322 (2009).▪▪ Single-base resolution DNA methylation sequencing of the human genome uncovers unprecedented DNA methylation changes associated with development and differentiation in human cells.
    • Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R: Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl Acad. Sci. USA97(10),5237–5242 (2000).
    • Gehring M, Henikoff S: DNA methylation dynamics in plant genomes. Biochim. Biophys. Acta.1769(5–6),276–286 (2007).
    • Kriaucionis S, Heintz N: The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324(5929),929–930 (2009).▪ First description of a new DNA modification, hydroxymethylcytosine. This has future implications for disease pathogenesis mediated by DNA methylation.
    • Tahiliani M, Koh KP, Shen Y et al.: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science324(5929),930–935 (2009).▪ Insight into the potential mechanism of hydroxymethylation modification.
    • Rakyan VK, Hildmann T, Novik KL et al.: DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol.2(12),e405 (2004).
    • Cheng X, Blumenthal RM: Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry49(14),2999–3008 (2010).
    • 10  Feinberg AP: A genetic approach to cancer epigenetics. Cold Spring Harb. Symp. Quant. Biol.70,335–341 (2005).
    • 11  Gronbaek K, Hother C, Jones PA: Epigenetic changes in cancer. APMIS115(10),1039–1059 (2007).
    • 12  Ushijima T, Asada K: Aberrant DNA methylation in contrast with mutations. Cancer Sci.101(2),300–305 (2010).
    • 13  Toyota M, Ahuja N, Ohe-Toyota M, Herman G, Baylin SB, Issa JP: CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA96(15),8681–8686 (1999).
    • 14  Issa JP: CpG island methylator phenotype in cancer. Nat. Rev. Cancer4(12),988–993 (2004).▪▪ Great review of the role of DNA methylation with respect to CpG island methylator phenotype in cancer pathology and etiology.
    • 15  Kim JH, Shin SH, Kwon HJ, Cho NY, Kang GH: Prognostic implications of CpG island hypermethylator phenotype in colorectal cancers. Virchows Arch.455(6),485–494 (2009).
    • 16  Li B, Liu W, Wang L et al.: CpG island methylator phenotype associated with tumor recurrence in tumor-node-metastasis stage I hepatocellular carcinoma. Ann. Surg. Oncol.17(7),1917–1926 (2010).
    • 17  Cheng Y, Zhang C, Zhao J et al.: Correlation of CpG island methylator phenotype with poor prognosis in hepatocellular carcinoma. Exp. Mol. Pathol.88(1),112–117 (2010).
    • 18  Sato H, Oka T, Shinnou Y et al.: Multi-step aberrant CpG island hyper-methylation is associated with the progression of adult T-cell leukemia/lymphoma. Am. J. Pathol.176(1),402–415 (2010).
    • 19  Tanemura A, Terando AM, Sim MS et al.: CpG island methylator phenotype predicts progression of malignant melanoma. Clin. Cancer Res.15(5),1801–1807 (2009).
    • 20  Onciu M: Acute lymphoblastic leukemia. Hematol. Oncol. Clin. North Am.23(4),655–674 (2009).
    • 21  Heerema-Mckenney A, Arber DA: Acute myeloid leukemia. Hematol. Oncol. Clin. North Am.23(4),633–654 (2009).
    • 22  Stone RM: Prognostic factors in AML in relation to (ab)normal karyotype. Best Pract. Res. Clin. Haematol.22(4),523–528 (2009).
    • 23  Martinelli G, Iacobucci I, Papayannidis C, Soverini S: New targets for Ph+ leukemia therapy. Best Pract. Res. Clin. Haematol.22(3),445–454 (2009).
    • 24  Krug U, Ganser A, Koeffler HP: Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene21(21),3475–3495 (2002).
    • 25  Pui CH, Relling MV, Downing JR: Acute lymphoblastic leukemia. N. Engl. J. Med.350(15),1535–1548 (2004).▪▪ Excellent review of childhood acute lymphoblastic leukemia.
    • 26  Greaves M: In utero origins of childhood leukemia. Early Hum. Dev.81(1),123–129 (2005).▪ Great review of evidence suggesting the in utero origins (and mechanisms) of childhood leukemia.
    • 27  Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF, Hickstein DD: Tel-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA103(41),15166–15171 (2006).
    • 28  Calero Moreno TM, Gustafsson G, Garwicz S et al.: Deletion of the INK4-locus (the p16INK4a, p14arf and p15ink4b genes) predicts relapse in children with all treated according to the Nordic protocols nopho-86 and nopho-92. Leukemia16(10),2037–2045 (2002).
    • 29  Maloney KW, Mcgavran L, Odom LF, Hunger SP: Acquisition of p16(ink4a) and p15(ink4b) gene abnormalities between initial diagnosis and relapse in children with acute lymphoblastic leukemia. Blood93(7),2380–2385 (1999).
    • 30  Felix CA, Nau MM, Takahashi T et al.: Hereditary and acquired p53 gene mutations in childhood acute lymphoblastic leukemia. J. Clin. Invest.89(2),640–647 (1992).
    • 31  Mullighan CG, Goorha S, Radtke I et al.: Genome-wide analysis of genetic alterations in acute lymphoblastic leukemia. Nature446(7137),758–764 (2007).▪ Great research paper describing genome-wide DNA mutations associated with childhood actute lymphoblastic leukemia.
    • 32  Zuo T, Tycko B, Liu TM, Lin HJ, Huang THM: Methods in DNA methylation profiling. Epigenomics1(3),331–345 (2009).▪ Great review of the current methods of DNA methylation profiling.
    • 33  Laird PW: Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet.11(3),191–203 (2010).▪▪ Excellent overview of the current methods of genome-wide DNA methylation analysis.
    • 34  Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB: Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA93(18),9821–9826 (1996).▪ First description of the methylation-specific PCR assay for loci-specific DNA methylation analyses.
    • 35  Gutierrez MI, Siraj AK, Bhargava M et al.: Concurrent methylation of multiple genes in childhood ALL: Correlation with phenotype and molecular subgroup. Leukemia17(9),1845–1850 (2003).
    • 36  Yang Y, Takeuchi S, Hofmann WK et al.: Aberrant methylation in promoter-associated CpG islands of multiple genes in acute lymphoblastic leukemia. Leuk. Res.30(1),98–102 (2006).
    • 37  Roman-Gomez J, Jimenez-Velasco A, Agirre X et al.: Promoter hypermethylation and global hypomethylation are independent epigenetic events in lymphoid leukemogenesis with opposing effects on clinical outcome. Leukemia20(8),1445–1448 (2006).
    • 38  Kim M, Yim Sh, Cho NS et al.: Homozygous deletion of CDKN2A (p16, p14) and CDKN2B (p15) genes is a poor prognostic factor in adult but not in childhood b-lineage acute lymphoblastic leukemia: a comparative deletion and hypermethylation study. Cancer Genet. Cytogenet.195(1),59–65 (2009).
    • 39  Hesson LB, Dunwell TL, Cooper WN et al.: The novel RASSF6 and RASSF10 candidate tumour suppressor genes are frequently epigenetically inactivated in childhood leukemias. Mol. Cancer8,42 (2009).
    • 40  Paulsson K, An Q, Moorman AV et al.: Methylation of tumour suppressor gene promoters in the presence and absence of transcriptional silencing in high hyperdiploid acute lymphoblastic leukemia. Br. J. Haematol.144(6),838–847 (2009).
    • 41  Bock C: Epigenetic biomarker development. Epigenomics1(1),99–110 (2009).▪ Interesting rationale for the development of biomarkers using DNA methylation.
    • 42  Stumpel DJ, Schneider P, van Roon EH et al.: Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood114(27),5490–5498 (2009).
    • 43  Dunwell TL, Hesson LB, Pavlova T et al.: Epigenetic analysis of childhood acute lymphoblastic leukemia. Epigenetics4(3),185–193 (2009).
    • 44  Taylor KH, Pena-Hernandez KE, Davis JW et al.: Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Res.67(6),2617–2625 (2007).
    • 45  Davidsson J, Lilljebjorn H, Andersson A et al.: The DNA methylome of pediatric acute lymphoblastic leukemia. Hum. Mol. Genet.18(21),4054–4065 (2009).
    • 46  Dunwell T, Hesson L, Rauch TA et al.: A genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers. Mol. Cancer9,44 (2010).
    • 47  Schafer E, Irizarry R, Negi S et al.: Promoter hypermethylation in MLL-R infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood115(23),4798–4809 (2010).
    • 48  Bibikova M, Fan JB: Goldengate assay for DNA methylation profiling. Methods Mol. Biol.507,149–163 (2009).
    • 49  Milani L, Lundmark A, Kiialainen A et al.: DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia. Blood115(6),1214–1225 (2010).▪ Comprehensive study utilizing direct measurement of DNA methylation by bisulfite conversion and bead-array technology.
    • 50  Taylor KH, Kramer RS, Davis JW et al.: Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res.67(18),8511–8518 (2007).▪ One of the first papers to utilize high-throughput sequencing technology for DNA methylation analysis in childhood acute lymphoblastic leukemia.
    • 51  Wang MX, Wang HY, Zhao X et al.: Molecular detection of B-cell neoplasms by specific DNA methylation biomarkers. Int. J. Clin. Exp. Pathol.3(3),265–279 (2010).
    • 52  Deneberg S, Grovdal M, Karimi M et al.: Gene-specific and global methylation patterns predict outcome in patients with acute myeloid leukemia. Leukemia24(5),932–941 (2010).
    • 53  Lister R, Ecker JR: Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res.19(6),959–966 (2009).
    • 54  Flusberg BA, Webster DR, Lee JH et al.: Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods7(6),461–465 (2010).▪▪ First paper to describe single-molecule sequencing and detection of methylated DNA without the requirement of bisulfite conversion.
    • 55  Davalos V, Esteller M: miRNAs and cancer epigenetics: a macrorevolution. Curr. Opin Oncol.22(1),35–45 (2010).▪▪ Excellent review article on the role of miRNA in cancer.
    • 56  Esquela-Kerscher A, Slack FJ: Oncomirs – miRNAs with a role in cancer. Nat. Rev. Cancer6(4),259–269 (2006).
    • 57  Zhang H, Li Y, Lai M: The miRNA network and tumor metastasis. Oncogene29(7),937–948 (2010).▪▪ Excellent review article on the role of miRNA in cancer.
    • 58  Xie L, Qian X, Liu B: miRNAs: Novel biomarkers for gastrointestinal carcinomas. Mol. Cell Biochem.341(1–2),291–299 (2010).
    • 59  Seca H, Almeida GM, Guimaraes JE, Vasconcelos MH: miR signatures and the role of miRs in acute myeloid leukemia. Eur. J. Cancer46(9),1520–1527 (2010).
    • 60  Volinia S, Galasso M, Costinean S et al.: Reprogramming of miRNA networks in cancer and leukemia. Genome Res.20(5),589–599 (2010).
    • 61  Schotte D, Chau JC, Sylvester G et al.: Identification of new miRNA genes and aberrant miRNA profiles in childhood acute lymphoblastic leukemia. Leukemia23(2),313–322 (2009).
    • 62  Ju X, Li D, Shi Q, Hou H, Sun N, Shen B: Differential miRNA expression in childhood B-cell precursor acute lymphoblastic leukemia. Pediatr. Hematol. Oncol.26(1),1–10 (2009).▪▪ Demonstrates differential miRNA expression, overexpression of miR-222, miR-339 and miR-142-3p, and downregulation of miR-451 and miR-373 between childhood acute lymphoblastic leukemia and healthy samples.
    • 63  Mi S, Lu J, Sun M et al.: miRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc. Natl Acad. Sci. USA104(50),19971–19976 (2007).
    • 64  Fulci V, Colombo T, Chiaretti S et al.: Characterization of B- and T-lineage acute lymphoblastic leukemia by integrated analysis of microRNA and mRNA expression profiles. Genes Chromosomes Cancer48(12),1069–1082 (2009).
    • 65  Chen J, Odenike O, Rowley JD: Leukaemogenesis: more than mutant genes. Nat. Rev. Cancer10(1),23–36 (2010).
    • 66  Friedman JM, Liang G, Liu CC et al.: The putative tumor suppressor miRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res.69(6),2623–2629 (2009).
    • 67  Agirre X, Vilas-Zornoza A, Jimenez-Velasco A et al.: Epigenetic silencing of the tumor suppressor miRNA HSA-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res.69(10),4443–4453 (2009).
    • 68  Roman-Gomez J, Agirre X, Jimenez-Velasco A et al.: Epigenetic regulation of miRNAs in acute lymphoblastic leukemia. J. Clin. Oncol.27(8),1316–1322 (2009).
    • 69  Mattick JS, Taft RJ, Faulkner GJ: A global view of genomic information – moving beyond the gene and the master regulator. Trends Genet.26(1),21–28 (2010).▪ Great review article highlighting the role of noncoding RNA in the regulation of gene expression and disease pathogenesis.
    • 70  Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A: The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS ONE5(1),e8888 (2010).
    • 71  Milani L, Lundmark A, Nordlund J et al.: Allele-specific gene expression patterns in primary leukemic cells reveal regulation of gene expression by CpG site methylation. Genome Res.19(1),1–11 (2009).
    • 72  Strathdee G, Holyoake TL, Sim A et al.: Inactivation of HOXA genes by hypermethylation in myeloid and lymphoid malignancy is frequent and associated with poor prognosis. Clin. Cancer Res.13(17),5048–5055 (2007).
    • 73  Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J: The role of miRNAs in normal and malignant hematopoiesis. Eur. J. Haematol.84(1),1–16 (2010).
    • 74  Li X, Liu J, Zhou R, Huang S, Chen XM: Gene silencing of miR22 in acute lymphoblastic leukemia involves histone modifications independent of promoter DNA methylation. Br. J. Haematol.148(1),69–79 (2010).
    • 75  Zanette DL, Rivadavia F, Molfetta GA et al.: miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz. J. Med. Biol. Res.40(11),1435–1440 (2007).
    • 76  Bandyopadhyay S, Mitra R, Maulik U, Zhang MQ: Development of the human cancer miRNA network. Silence1(1),6 (2010).