We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Epigenomics and ovarian carcinoma

    Leonel Maldonado

    Department of Otolaryngology & Head & Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, MD, USA

    &
    Published Online:https://doi.org/10.2217/bmm.10.72

    Ovarian cancer is the leading cause of death among gynecological cancers. It is now recognized that in addition to genetic alterations, epigenetic mechanisms, such as DNA methylation, histone modifications and nucleosome remodeling, play an important role in the development and progression of ovarian cancer by modulating chromatin structure, and gene and miRNA expression. Furthermore, epigenetic alterations have been recognized as useful tools for the development of novel biomarkers for diagnosis, prognosis, therapeutic prediction and monitoring of diseases. Moreover, new epigenetic therapies, such as DNA methyltransferase inhibitors and histone deacetylase inhibitors, have been found to be a potential therapeutic option, especially when used in combination with other agents. Here we discuss current developments in ovarian carcinoma epigenome research, the importance of the ovarian carcinoma epigenome for development of diagnostic and prognostic biomarkers, and the current epigenetic therapies used in ovarian cancer.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J. Clin. (2010) (Epub ahead of print).
    • Jones PA, Laird PW: Cancer epigenetics comes of age. Nat. Genet.21(2),163–167 (1999).
    • Barakat RR, Markman M, Randall M: Principles and Practice Of Gynecologic Oncology (5th Edition). Wolters Kluwer/Lippincott Williams & Wilkins, PA, USA (2009).
    • Barton CA, Hacker NF, Clark SJ, O’Brien PM: DNA methylation changes in ovarian cancer: implications for early diagnosis, prognosis and treatment. Gynecol. Oncol.109(1),129–139 (2008).▪▪ Very complete review of epigenetic changes in ovarian cancer and their importance in the detection of biomarkers for diagnosis, prognosis and therapeutic response.
    • Baylin SB, Ohm JE: Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer6(2),107–116 (2006).▪▪ Interesting article on how epigenetic alterations drive cells to certain pathways that lead to tumorigenesis.
    • Esteller M: Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet.8(4),286–298 (2007).▪▪ Comprehensive review of the techniques used for the study of the DNA methylome and histone modifications, emphasizing genome-wide arrays.
    • Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3(6),415–428 (2002).▪▪ Excellent article on epigenetic mechanisms that alter the expression of genes.
    • Ting AH, McGarvey KM, Baylin SB: The cancer epigenome – components and functional correlates. Genes Dev.20(23),3215–3231 (2006).
    • Jones PA, Baylin SB: The epigenomics of cancer. Cell128(4),683–692 (2007).
    • 10  Richardson BC: Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J. Nutr.132(Suppl. 8),2401S–2405S (2002).
    • 11  Eden A, Gaudet F, Waghmare A, Jaenisch R: Chromosomal instability and tumors promoted by DNA hypomethylation. Science300(5618),455 (2003).
    • 12  Feinberg AP, Tycko B: The history of cancer epigenetics. Nat. Rev. Cancer4(2),143–153 (2004).▪ Traces epigenetic alterations since their conception and reviews the advances made on this field, addressing the genetic basis of epigenetic changes.
    • 13  Ehrlich M: DNA methylation in cancer: too much, but also too little. Oncogene21(35),5400–5413 (2002).
    • 14  Martin C, Zhang Y: The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol.6(11),838–849 (2005).▪▪ Summarizes the recent advances in the understanding of how lysine methylation plays an important role in heterochromatin formation and transcriptional regulation.
    • 15  Esteller M, Almouzni G: How epigenetics integrates nuclear functions. Workshop on epigenetics and chromatin: transcriptional regulation and beyond. EMBO Rep.6(7),624–628 (2005).
    • 16  Nguyen CT, Gonzales FA, Jones PA: Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res.29(22),4598–4606 (2001).
    • 17  Knudson AG: Chasing the cancer demon. Annu. Rev. Genet.34,1–19 (2000).
    • 18  Nussbaum RL, Mcinnes RR, Willard HF, Thompson MW: Thompson & Thompson Genetics in Medicine (7th Edition). Saunders/Elsevier, PA, USA (2007).
    • 19  Antequera F, Bird A, Jost IJP, Saluz: DNA Methylation: Molecular Biology and Biological Significance. Birkhauser Verlag, Basel, Switzerland, 169–185 (1993).
    • 20  Takai D, Jones PA: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA99(6),3740–3745 (2002).
    • 21  Ferguson-Smith AC, Surani MA: Imprinting and the epigenetic asymmetry between parental genomes. Science293(5532),1086–1089 (2001).
    • 22  Reik W, Lewis A: Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat. Rev. Genet.6(5),403–410 (2005).
    • 23  Brenner C, Fuks F: DNA methyltransferases: facts, clues, mysteries. Curr. Top. Microbiol. Immunol.301,45–66 (2006).
    • 24  Tajima S, Suetake I: Regulation and function of DNA methylation in vertebrates. J. Biochem.123(6),993–999 (1998).
    • 25  Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases DNMT3A and DNMT3B are essential for de novo methylation and mammalian development. Cell99(3),247–257 (1999).
    • 26  Chedin F, Lieber Mr, Hsieh Cl: The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by DNMT3A. Proc. Natl Acad. Sci. USA99(26),16916–16921 (2002).
    • 27  Aapola U, Kawasaki K, Scott HS et al.: Isolation and initial characterization of a novel zinc finger gene, DNMT3l, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics65(3),293–298 (2000).
    • 28  Dong A, Yoder JA, Zhang X, Zhou L, Bestor TH, Cheng X: Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res.29(2),439–448 (2001).
    • 29  Schaefer M, Lyko F: Solving the DNMT2 enigma. Chromosoma119(1),35–40 (2010).
    • 30  Sinkkonen L, Hugenschmidt T, Berninger P et al.: MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol.15(3),259–267 (2008).
    • 31  Benetti R, Gonzalo S, Jaco I et al.: A mammalian microRNA cluster controls DNA methylation and telomere recombination via RBL2-dependent regulation of DNA methyltransferases. Nat. Struct. Mol. Biol.15(9),998 (2008).
    • 32  Kim VN: MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol.6(5),376–385 (2005).
    • 33  Ehrlich M: DNA hypomethylation, cancer, the immunodeficiency, centromeric region instability, facial anomalies syndrome and chromosomal rearrangements. J. Nutr.132(Suppl. 8),2424S–2429S (2002).
    • 34  Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301(5895),89–92 (1983).
    • 35  Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R: DNA hypomethylation leads to elevated mutation rates. Nature395(6697),89–93 (1998).
    • 36  Kaneda A, Feinberg AP: Loss of imprinting of IGF2: a common epigenetic modifier of intestinal tumor risk. Cancer Res.65(24),11236–11240 (2005).
    • 37  Kornberg RD, Lorch Y: Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell98(3),285–294 (1999).
    • 38  Schubeler D, Macalpine DM, Scalzo D et al.: The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev.18(11),1263–1271 (2004).
    • 39  Shiio Y, Eisenman RN: Histone sumoylation is associated with transcriptional repression. Proc. Natl Acad. Sci. USA100(23),13225–13230 (2003).
    • 40  Shilatifard A: Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Ann. Rev. Biochem.75,243–269 (2006).
    • 41  Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G: Genome regulation by polycomb and trithorax proteins. Cell128(4),735–745 (2007).
    • 42  Cao R, Wang L, Wang H et al.: Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science298(5595),1039–1043 (2002).
    • 43  Fuks F, Hurd Pj, Deplus R, Kouzarides T: The DNA methyltransferases associate with hp1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res.31(9),2305–2312 (2003).
    • 44  Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410(6824),116–120 (2001).
    • 45  Clouaire T, Stancheva I: Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cell Mol. Life Sci.65(10),1509–1522 (2008).
    • 46  Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T: The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem.278(6),4035–4040 (2003).
    • 47  Jones PL, Veenstra GJ, Wade PA et al.: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet.19(2),187–191 (1998).
    • 48  Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2),281–297 (2004).
    • 49  Boehm M, Slack FJ: MicroRNA control of lifespan and metabolism. Cell Cycle5(8),837–840 (2006).
    • 50  Carleton M, Cleary MA, Linsley PS: MicroRNAs and cell cycle regulation. Cell Cycle6(17),2127–2132 (2007).
    • 51  Harfe BD: MicroRNAs in vertebrate development. Curr. Opin. Genet. Dev.15(4),410–415 (2005).
    • 52  Lau NC, Lim LP, Weinstein EG, Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294(5543),858–862 (2001).
    • 53  Lu J, Getz G, Miska EA et al.: MicroRNA expression profiles classify human cancers. Nature435(7043),834–838 (2005).
    • 54  Volinia S, Calin GA, Liu CG et al.: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA103(7),2257–2261 (2006).
    • 55  Calin GA, Dumitru CD, Shimizu M et al.: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA99(24),15524–15529 (2002).
    • 56  Calin GA, Ferracin M, Cimmino A et al.: A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med.353(17),1793–1801 (2005).
    • 57  Nakamura T, Canaani E, Croce CM: Oncogenic ALL1 fusion proteins target drosha-mediated microRNA processing. Proc. Natl Acad. Sci. USA104(26),10980–10985 (2007).
    • 58  Saito Y, Liang G, Egger G et al.: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell9(6),435–443 (2006).
    • 59  Chang TC, Wentzel EA, Kent OA et al.: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell.26(5),745–752 (2007).
    • 60  He L, He X, Lim LP et al.: A microRNA component of the p53 tumour suppressor network. Nature447(7148),1130–1134 (2007).
    • 61  Raver-Shapira N, Marciano E, Meiri E et al.: Transcriptional activation of mir-34a contributes to p53-mediated apoptosis. Mol. Cell.26(5),731–743 (2007).
    • 62  Sellar GC, Watt KP, Rabiasz GJ et al.: OPCMl at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer. Nat. Genet.34(3),337–343 (2003).
    • 63  Teodoridis JM, Hall J, Marsh S et al.: CpG island methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res.65(19),8961–8967 (2005).
    • 64  Zhang J, Ye F, Chen HZ, Ye DF, Lu WG, Xie X: [Deletion of OPCMl gene and promoter methylation in ovarian epithelial carcinoma]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao28(2),173–177 (2006).
    • 65  Kwong J, Lee JY, Wong KK et al.: Candidate tumor suppressor gene DLEC1 is frequently downregulated by promoter hypermethylation and histone hypoacetylation in human epithelial ovarian cancer. Neoplasia8(4),268–278 (2006).
    • 66  Agathanggelou A, Honorio S, Macartney DP et al.: Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene20(12),1509–1518 (2001).
    • 67  Ibanez De Caceres I, Battagli C, Esteller M et al.: Tumor cell-specific brca1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res.64(18),6476–6481 (2004).▪ Important article showing that promoter hypermethylation can be detected in bodily fluids of patients with ovarian cancer, enhancing its early detection.
    • 68  Rathi A, Virmani AK, Schorge JO et al.: Methylation profiles of sporadic ovarian tumors and nonmalignant ovaries from high-risk women. Clin. Cancer Res.8(11),3324–3331 (2002).
    • 69  Yoon JH, Dammann R, Pfeifer GP: Hypermethylation of the CpG island of the RASSF1A gene in ovarian and renal cell carcinomas. Int. J. Cancer94(2),212–217 (2001).
    • 70  Petrocca F, Iliopoulos D, Qin HR et al.: Alterations of the tumor suppressor gene ARLTS1 in ovarian cancer. Cancer Res.66(21),10287–10291 (2006).
    • 71  Yu Y, Fujii S, Yuan J et al.: Epigenetic regulation of ARHI in breast and ovarian cancer cells. Ann. NY Acad. Sci.983,268–277 (2003).
    • 72  Yu Y, Xu F, Peng H et al.: NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc. Natl Acad. Sci. USA96(1),214–219 (1999).
    • 73  Chien J, Staub J, Avula R et al.: Epigenetic silencing of TCEAL7 (Bex4) in ovarian cancer. Oncogene24(32),5089–5100 (2005).
    • 74  Esteller M, Corn PG, Baylin SB, Herman JG: A gene hypermethylation profile of human cancer. Cancer Res.61(8),3225–3229 (2001).▪ Interesting article showing cancer-specific methylation profiles, leading to important knowledge of the cancer epigenome.
    • 75  Esteller M, Silva JM, Dominguez G et al.: Promoter hypermethylation and brca1 inactivation in sporadic breast and ovarian tumors. J. Natl Cancer Inst.92(7),564–569 (2000).
    • 76  Baldwin RL, Nemeth E, Tran H et al.: BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res.60(19),5329–5333 (2000).
    • 77  Chan KY, Ozcelik H, Cheung AN, Ngan HY, Khoo US: Epigenetic factors controlling the brca1 and BRCA2 genes in sporadic ovarian cancer. Cancer Res.62(14),4151–4156 (2002).
    • 78  Wilcox CB, Baysal BE, Gallion HH, Strange MA, Deloia JA: High-resolution methylation analysis of the BRCA1 promoter in ovarian tumors. Cancer Genet. Cytogenet.159(2),114–122 (2005).
    • 79  Esteller M: Epigenetic lesions causing genetic lesions in human cancer: promoter hypermethylation of DNA repair genes. Eur. J. Cancer36(18),2294–2300 (2000).
    • 80  Gras E, Cortes J, Diez O et al.: Loss of heterozygosity on chromosome 13q12-q14, brca-2 mutations and lack of BRCA-2 promoter hypermethylation in sporadic epithelial ovarian tumors. Cancer92(4),787–795 (2001).
    • 81  Hilton JL, Geisler JP, Rathe JA, Hattermann-Zogg MA, Deyoung B, Buller RE: Inactivation of BRCA1 and BRCA2 in ovarian cancer. J. Natl Cancer Inst.94(18),1396–1406 (2002).
    • 82  Milde-Langosch K, Ocon E, Becker G, Loning T: P16/MTS1 inactivation in ovarian carcinomas: high frequency of reduced protein expression associated with hyper-methylation or mutation in endometrioid and mucinous tumors. Int. J. Cancer79(1),61–65 (1998).
    • 83  Socha MJ, Said N, Dai Y et al.: Aberrant promoter methylation of SPARC in ovarian cancer. Neoplasia11(2),126–135 (2009).
    • 84  Kikuchi R, Tsuda H, Kozaki K et al.: Frequent inactivation of a putative tumor suppressor, angiopoietin-like protein 2, in ovarian cancer. Cancer Res.68(13),5067–5075 (2008).
    • 85  Kikuchi R, Tsuda H, Kanai Y et al.: Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer. Cancer Res.67(15),7095–7105 (2007).
    • 86  Cvetkovic D, Pisarcik D, Lee C, Hamilton TC, Abdollahi A: Altered expression and loss of heterozygosity of the LOT1 gene in ovarian cancer. Gynecol. Oncol.95(3),449–455 (2004).
    • 87  Pruitt K, Ulku AS, Frantz K et al.: Ras-mediated loss of the pro-apoptotic response protein PAR-4 is mediated by DNA hypermethylation through Raf-independent and Raf-dependent signaling cascades in epithelial cells. J. Biol. Chem.280(24),23363–23370 (2005).
    • 88  Arnold JM, Cummings M, Purdie D, Chenevix-Trench G: Reduced expression of intercellular adhesion molecule-1 in ovarian adenocarcinomas. Br. J. Cancer85(9),1351–1358 (2001).
    • 89  Yuecheng Y, Hongmei L, Xiaoyan X: Clinical evaluation of E-cadherin expression and its regulation mechanism in epithelial ovarian cancer. Clin. Exp. Metastasis23(1),65–74 (2006).
    • 90  Feng W, Marquez RT, Lu Z et al.: Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer112(7),1489–1502 (2008).
    • 91  Fiegl H, Windbichler G, Mueller-Holzner E et al.: HOXA11 DNA methylation – a novel prognostic biomarker in ovarian cancer. Int. J. Cancer123(3),725–729 (2008).
    • 92  Potapova A, Hoffman AM, Godwin AK, Al-Saleem T, Cairns P: Promoter hypermethylation of the PALB2 susceptibility gene in inherited and sporadic breast and ovarian cancer. Cancer Res.68(4),998–1002 (2008).
    • 93  Izutsu N, Maesawa C, Shibazaki M et al.: Epigenetic modification is involved in aberrant expression of class III β-tubulin, TUBB3, in ovarian cancer cells. Int. J. Oncol.32(6),1227–1235 (2008).
    • 94  Cheng P, Schmutte C, Cofer KF, Felix JC, Yu MC, Dubeau L: Alterations in DNA methylation are early, but not initial, events in ovarian tumorigenesis. Br. J. Cancer75(3),396–402 (1997).
    • 95  Rose SL, Fitzgerald MP, White NO et al.: Epigenetic regulation of maspin expression in human ovarian carcinoma cells. Gynecol. Oncol.102(2),319–324 (2006).
    • 96  Czekierdowski A, Czekierdowska S, Wielgos M, Smolen A, Kaminski P, Kotarski J: The role of CpG islands hypomethylation and abnormal expression of neuronal protein synuclein-γ (sncg) in ovarian cancer. Neuro. Endocrinol. Lett.27(3),381–386 (2006).
    • 97  Gupta A, Godwin AK, Vanderveer L, Lu A, Liu J: Hypomethylation of the synuclein g gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res.63(3),664–673 (2003).
    • 98  Honda H, Pazin MJ, Ji H, Wernyj RP, Morin PJ: Crucial roles of Sp1 and epigenetic modifications in the regulation of the CLDN4 promoter in ovarian cancer cells. J. Biol. Chem.281(30),21433–21444 (2006).
    • 99  Litkouhi B, Kwong J, Lo CM et al.: Claudin-4 overexpression in epithelial ovarian cancer is associated with hypomethylation and is a potential target for modulation of tight junction barrier function using a C-terminal fragment of Clostridium perfringens enterotoxin. Neoplasia9(4),304–314 (2007).
    • 100  Menendez L, Benigno BB, Mcdonald JF: L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas. Mol. Cancer3,12 (2004).
    • 101  Kolomietz E, Meyn MS, Pandita A, Squire JA: The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer35(2),97–112 (2002).
    • 102  Symer DE, Connelly C, Szak St et al.: Human L1 retrotransposition is associated with genetic instability in vivo. Cell110(3),327–338 (2002).
    • 103  Woloszynska-Read A, James SR, Link PA, Yu J, Odunsi K, Karpf AR: DNA methylation-dependent regulation of BORIS/CTCFL expression in ovarian cancer. Cancer Immun.7,21 (2007).
    • 104  Murphy SK, Huang Z, Wen Y et al.: Frequent IGF2/H19 domain epigenetic alterations and elevated IGF2 expression in epithelial ovarian cancer. Mol. Cancer Res.4(4),283–292 (2006).
    • 105  Ahluwalia A, Hurteau JA, Bigsby RM, Nephew KP: DNA methylation in ovarian cancer. II. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells. Gynecol. Oncol.82(2),299–304 (2001).
    • 106  Ehrlich M, Woods CB, Yu MC et al.: Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene25(18),2636–2645 (2006).
    • 107  Chen CL, Yan X, Gao YN, Liao QP: [Expression of DNA methyltransferase 1, 3A and 3B mRNA in the epithelial ovarian carcinoma]. Zhonghua Fu Chan Ke Za Zhi40(11),770–774 (2005).
    • 108  Kaneuchi M, Sasaki M, Tanaka Y et al.: Expression and methylation status of 14–3-3 s gene can characterize the different histological features of ovarian cancer. Biochem. Biophys. Res. Commun.316(4),1156–1162 (2004).
    • 109  Kaneuchi M, Sasaki M, Tanaka Y et al.: WT1 and WT1-AS genes are inactivated by promoter methylation in ovarian clear cell adenocarcinoma. Cancer104(9),1924–1930 (2005).
    • 110  Terasawa K, Sagae S, Toyota M et al.: Epigenetic inactivation of TMS1/ASC in ovarian cancer. Clin. Cancer Res.10(6),2000–2006 (2004).
    • 111  Makarla PB, Saboorian MH, Ashfaq R et al.: Promoter hypermethylation profile of ovarian epithelial neoplasms. Clin. Cancer Res.11(15),5365–5369 (2005).
    • 112  Caslini C, Capo-Chichi CD, Roland IH, Nicolas E, Yeung AT, Xu XX: Histone modifications silence the GATA transcription factor genes in ovarian cancer. Oncogene25(39),5446–5461 (2006).
    • 113  Valls E, Sanchez-Molina S, Martinez-Balbas MA: Role of histone modifications in marking and activating genes through mitosis. J. Biol. Chem.280(52),42592–42600 (2005).
    • 114  Richon VM, Sandhoff TW, Rifkind RA, Marks PA: Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl Acad. Sci. USA97(18),10014–10019 (2000).
    • 115  Chan MW, Huang YW, Hartman-Frey C et al.: Aberrant transforming growth factor-β1 signaling and SMAD4 nuclear translocation confer epigenetic repression of ADAM19 in ovarian cancer. Neoplasia10(9),908–919 (2008).
    • 116  Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB: Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA93(18),9821–9826 (1996).
    • 117  Laird PW: The power and the promise of DNA methylation markers. Nat. Rev. Cancer3(4),253–266 (2003).
    • 118  Rand KN, Ho T, Qu W et al.: Headloop suppression PCR and its application to selective amplification of methylated DNA sequences. Nucleic Acids Res.33(14),e127 (2005).
    • 119  Cottrell SE, Laird PW: Sensitive detection of DNA methylation. Ann. NY Acad. Sci.983,120–130 (2003).
    • 120  Fraga MF, Esteller M: DNA methylation: a profile of methods and applications. Biotechniques33(3), 632, 634, 636–649 (2002).
    • 121  Bird AP, Southern EM: Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis. J. Mol. Biol.118(1),27–47 (1978).
    • 122  Frommer M, Mcdonald LE, Millar Ds et al.: A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA89(5),1827–1831 (1992).
    • 123  Xiong Z, Laird PW: COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res.25(12),2532–2534 (1997).
    • 124  Eads CA, Danenberg KD, Kawakami K et al.: MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res.28(8),E32 (2000).
    • 125  Fackler MJ, Mcveigh M, Mehrotra J et al.: Quantitative multiplex methylation-specific PCR assay for the detection of promoter hypermethylation in multiple genes in breast cancer. Cancer Res.64(13),4442–4452 (2004).
    • 126  Swift-Scanlan T, Blackford A, Argani P, Sukumar S, Fackler MJ: Two-color quantitative multiplex methylation-specific PCR. Biotechniques40(2),210–219 (2006).
    • 127  Tost J, Gut IG: DNA methylation analysis by pyrosequencing. Nat. Protoc.2(9),2265–2275 (2007).
    • 128  Tost J, Gut IG: Analysis of gene-specific DNA methylation patterns by pyrosequencing technology. Methods Mol. Biol.373,89–102 (2007).
    • 129  Costello JF, Fruhwald MC, Smiraglia DJ et al.: Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat. Genet.24(2),132–138 (2000).
    • 130  Huang TH, Perry MR, Laux DE: Methylation profiling of CpG islands in human breast cancer cells. Hum. Mol. Genet.8(3),459–470 (1999).
    • 131  Hoque MO, Kim MS, Ostrow KL et al.: Genome-wide promoter analysis uncovers portions of the cancer methylome. Cancer Res.68(8),2661–2670 (2008).
    • 132  Suzuki H, Gabrielson E, Chen W et al.: A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat. Genet.31(2),141–149 (2002).
    • 133  Yamashita K, Upadhyay S, Osada M et al.: Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell2(6),485–495 (2002).
    • 134  Frigola J, Ribas M, Risques RA, Peinado MA: Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res.30(7),e28 (2002).
    • 135  Toyota M, Ho C, Ahuja N et al.: Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res.59(10),2307–2312 (1999).
    • 136  Khulan B, Thompson RF, Ye K et al.: Comparative isoschizomer profiling of cytosine methylation: the help assay. Genome Res.16(8),1046–1055 (2006).
    • 137  Keshet I, Schlesinger Y, Farkash S et al.: Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat. Genet.38(2),149–153 (2006).
    • 138  Weber M, Davies JJ, Wittig D et al.: Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet.37(8),853–862 (2005).
    • 139  Weber M, Hellmann I, Stadler MB et al.: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet.39(4),457–466 (2007).
    • 140  Noushmehr H, Weisenberger DJ, Diefes K et al.: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell17(5),510–522 (2010).
    • 141  Kuras L: Characterization of protein-DNA association in vivo by chromatin immunoprecipitation. Methods Mol. Biol.284,147–162 (2004).
    • 142  Roh TY, Ngau WC, Cui K, Landsman D, Zhao K: High-resolution genome-wide mapping of histone modifications. Nat. Biotechnol.22(8),1013–1016 (2004).
    • 143  Barski A, Cuddapah S, Cui K et al.: High-resolution profiling of histone methylations in the human genome. Cell129(4),823–837 (2007).
    • 144  Mikkelsen TS, Ku M, Jaffe DB et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature448(7153),553–560 (2007).
    • 145  Nossov V, Amneus M, Su F et al.: The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? Am. J. Obstet. Gynecol.199(3),215–223 (2008).
    • 146  Bast RC Jr: Status of tumor markers in ovarian cancer screening. J. Clin. Oncol.21(Suppl. 10),200S–205S (2003).
    • 147  Hickey KP, Boyle KP, Jepps HM, Andrew AC, Buxton EJ, Burns PA: Molecular detection of tumour DNA in serum and peritoneal fluid from ovarian cancer patients. Br. J. Cancer80(11),1803–1808 (1999).
    • 148  Collins Y, Dicioccio R, Keitz B, Lele S, Odunsi K: Methylation of death-associated protein kinase in ovarian carcinomas. Int. J. Gynecol. Cancer16(Suppl. 1),195–199 (2006).
    • 149  Wiley A, Katsaros D, Fracchioli S, Yu H: Methylation of the insulin-like growth factor binding protein-3 gene and prognosis of epithelial ovarian cancer. Int. J. Gynecol. Cancer16(1),210–218 (2006).
    • 150  Wiley A, Katsaros D, Chen H et al.: Aberrant promoter methylation of multiple genes in malignant ovarian tumors and in ovarian tumors with low malignant potential. Cancer107(2),299–308 (2006).
    • 151  Chan MW, Wei SH, Wen P et al.: Hypermethylation of 18S and 28S ribosomal DNAs predicts progression-free survival in patients with ovarian cancer. Clin. Cancer Res.11(20),7376–7383 (2005).
    • 152  Widschwendter M, Jiang G, Woods C et al.: DNA hypomethylation and ovarian cancer biology. Cancer Res.64(13),4472–4480 (2004).
    • 153  Su HY, Lai HC, Lin YW, Chou YC, Liu CY, Yu MH: An epigenetic marker panel for screening and prognostic prediction of ovarian cancer. Int. J. Cancer124(2),387–393 (2009).
    • 154  Apostolidou S, Hadwin R, Burnell M et al.: DNA methylation analysis in liquid-based cytology for cervical cancer screening. Int. J. Cancer125(12),2995–3002 (2009).
    • 155  Hoque MO, Begum S, Brait M et al.: Tissue inhibitor of metalloproteinases-3 promoter methylation is an independent prognostic factor for bladder cancer. J. Urol.179(2),743–747 (2008).
    • 156  Agarwal R, Kaye SB: Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat. Rev. Cancer3(7),502–516 (2003).
    • 157  Balch C, Huang TH, Brown R, Nephew KP: The epigenetics of ovarian cancer drug resistance and resensitization. Am. J. Obstet. Gynecol.191(5),1552–1572 (2004).
    • 158  Shah MA, Schwartz GK: Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin. Cancer Res.7(8),2168–2181 (2001).
    • 159  Dumontet C, Sikic BI: Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J. Clin. Oncol.17(3),1061–1070 (1999).
    • 160  Siddik ZH: Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene22(47),7265–7279 (2003).
    • 161  Geisler JP, Goodheart MJ, Sood AK, Holmes RJ, Hatterman-Zogg MA, Buller RE: Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma. Cancer98(10),2199–2206 (2003).
    • 162  Martini M, Ciccarone M, Garganese G et al.: Possible involvement of hMLH1, p16(INK4a) and PTEN in the malignant transformation of endometriosis. Int. J. Cancer102(4),398–406 (2002).
    • 163  Jass JR, Walsh MD, Barker M, Simms LA, Young J, Leggett BA: Distinction between familial and sporadic forms of colorectal cancer showing DNA microsatellite instability. Eur. J. Cancer38(7),858–866 (2002).
    • 164  Wang L, Bani-Hani A, Montoya DP et al.: hMLH1 and hMSH2 expression in human hepatocellular carcinoma. Int. J. Oncol.19(3),567–570 (2001).
    • 165  Atkin NB: Microsatellite instability. Cytogenet. Cell Genet.92(3–4),177–181 (2001).
    • 166  Brown R, Hirst GL, Gallagher WM et al.: hMLH1 expression and cellular responses of ovarian tumour cells to treatment with cytotoxic anticancer agents. Oncogene15(1),45–52 (1997).
    • 167  Liu L, Tommasi S, Lee DH, Dammann R, Pfeifer GP: Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene22(50),8125–8136 (2003).
    • 168  Staub J, Chien J, Pan Y et al.: Epigenetic silencing of HSulf-1 in ovarian cancer: implications in chemoresistance. Oncogene26(34),4969–4978 (2007).
    • 169  Lai J, Chien J, Staub J et al.: Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer. J. Biol. Chem.278(25),23107–23117 (2003).
    • 170  Wei SH, Brown R, Huang TH: Aberrant DNA methylation in ovarian cancer: is there an epigenetic predisposition to drug response? Ann. NY Acad. Sci.983,243–250 (2003).
    • 171  Wei SH, Chen CM, Strathdee G et al.: Methylation microarray analysis of late-stage ovarian carcinomas distinguishes progression-free survival in patients and identifies candidate epigenetic markers. Clin. Cancer Res.8(7),2246–2252 (2002).
    • 172  Taniguchi T, Tischkowitz M, Ameziane N et al.: Disruption of the fanconi anemia–BRCA pathway in cisplatin-sensitive ovarian tumors. Nat. Med.9(5),568–574 (2003).
    • 173  Hatle KM, Neveu W, Dienz O et al.: Methylation-controlled J protein promotes c-Jun degradation to prevent ABCD1 transporter expression. Mol. Cell. Biol.27(8),2952–2966 (2007).
    • 174  Shridhar V, Bible KC, Staub J et al.: Loss of expression of a new member of the DNAJ protein family confers resistance to chemotherapeutic agents used in the treatment of ovarian cancer. Cancer Res.61(10),4258–4265 (2001).
    • 175  Strathdee G, Davies BR, Vass JK, Siddiqui N, Brown R: Cell type-specific methylation of an intronic CpG island controls expression of the MCJ gene. Carcinogenesis25(5),693–701 (2004).
    • 176  Strathdee G, Vass JK, Oien KA, Siddiqui N, Curto-Garcia J, Brown R: Demethylation of the MCJ gene in stage III/IV epithelial ovarian cancer and response to chemotherapy. Gynecol. Oncol.97(3),898–903 (2005).
    • 177  Iorio MV, Visone R, Di Leva G et al.: MicroRNA signatures in human ovarian cancer. Cancer Res.67(18),8699–8707 (2007).▪ Evidences differential expression of miRNAs in ovarian cancer as well as its regulation by promoter methylation.
    • 178  Yang H, Kong W, He L et al.: MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res.68(2),425–433 (2008).
    • 179  Yang N, Kaur S, Volinia S et al.: MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res.68(24),10307–10314 (2008).
    • 180  Boren T, Xiong Y, Hakam A et al.: MicroRNAs and their target messenger RNAs associated with ovarian cancer response to chemotherapy. Gynecol. Oncol.113(2),249–255 (2009).
    • 181  Bolden JE, Peart MJ, Johnstone RW: Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov.5(9),769–784 (2006).
    • 182  Hellebrekers DM, Griffioen AW, Van Engeland M: Dual targeting of epigenetic therapy in cancer. Biochim. Biophys. Acta1775(1),76–91 (2007).
    • 183  Kim TY, Bang YJ, Robertson KD: Histone deacetylase inhibitors for cancer therapy. Epigenetics1(1),14–23 (2006).
    • 184  Minucci S, Pelicci PG: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer6(1),38–51 (2006).
    • 185  Jones PA, Taylor SM: Cellular differentiation, cytidine analogs and DNA methylation. Cell20(1),85–93 (1980).
    • 186  Goffin J, Eisenhauer E: DNA methyltransferase inhibitors-state of the art. Ann. Oncol.13(11),1699–1716 (2002).
    • 187  Cheng JC, Yoo CB, Weisenberger DJ et al.: Preferential response of cancer cells to zebularine. Cancer Cell6(2),151–158 (2004).
    • 188  Zhou L, Cheng X, Connolly BA, Dickman MJ, Hurd PJ, Hornby DP: Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol.321(4),591–599 (2002).
    • 189  Cheng JC, Matsen CB, Gonzales FA et al.: Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl Cancer Inst.95(5),399–409 (2003).
    • 190  Cheng JC, Weisenberger DJ, Gonzales FA et al.: Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol. Cell. Biol.24(3),1270–1278 (2004).
    • 191  Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R: Reversal of drug resistance in human tumor xenografts by 2´-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res.60(21),6039–6044 (2000).
    • 192  Nguyen CT, Weisenberger DJ, Velicescu M et al.: Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2´-deoxycytidine. Cancer Res.62(22),6456–6461 (2002).
    • 193  Fahrner JA, Eguchi S, Herman JG, Baylin SB: Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res.62(24),7213–7218 (2002).
    • 194  Kondo Y, Shen L, Issa JP: Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol. Cell. Biol.23(1),206–215 (2003).
    • 195  Zhang L, Volinia S, Bonome T et al.: Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc. Natl Acad. Sci. USA105(19),7004–7009 (2008).
    • 196  Brueckner B, Boy RG, Siedlecki P et al.: Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res.65(14),6305–6311 (2005).
    • 197  Fang MZ, Wang Y, Ai N et al.: Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res.63(22),7563–7570 (2003).
    • 198  Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E et al.: Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin. Cancer Res.9(5),1596–1603 (2003).
    • 199  Villar-Garea A, Fraga MF, Espada J, Esteller M: Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res.63(16),4984–4989 (2003).
    • 200  Yan L, Nass SJ, Smith D, Nelson WG, Herman JG, Davidson NE: Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor-α (ER) in ER-negative human breast cancer cell lines. Cancer Biol. Ther.2(5),552–556 (2003).
    • 201  Gartel AL, Serfas MS, Tyner AL: p21 – negative regulator of the cell cycle. Proc. Soc. Exp. Biol. Med.213(2),138–149 (1996).
    • 202  Kelly WK, Marks PA: Drug insight: histone deacetylase inhibitors – development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat. Clin. Pract. Oncol.2(3),150–157 (2005).
    • 203  Chen L, Fischle W, Verdin E, Greene WC: Duration of nuclear NF-κB action regulated by reversible acetylation. Science293(5535),1653–1657 (2001).
    • 204  Costanzo A, Merlo P, Pediconi N et al.: DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol. Cell9(1),175–186 (2002).
    • 205  Luo J, Su F, Chen D, Shiloh A, Gu W: Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature408(6810),377–381 (2000).
    • 206  Yuan ZL, Guan YJ, Chatterjee D, Chin YE: STAT3 dimerization regulated by reversible acetylation of a single lysine residue. Science307(5707),269–273 (2005).
    • 207  Dokmanovic M, Marks PA: Prospects: histone deacetylase inhibitors. J. Cell. Biochem.96(2),293–304 (2005).
    • 208  Cimini D, Mattiuzzo M, Torosantucci L, Degrassi F: Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol. Biol. Cell14(9),3821–3833 (2003).
    • 209  Blagosklonny MV, Robey R, Sackett DL et al.: Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol. Cancer Ther.1(11),937–941 (2002).
    • 210  Carducci MA, Gilbert J, Bowling MK et al.: A Phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin. Cancer Res.7(10),3047–3055 (2001).
    • 211  Vigushin DM, Ali S, Pace PE et al.: Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin. Cancer Res.7(4),971–976 (2001).
    • 212  Fouladi M, Furman WL, Chin T et al.: Phase I study of depsipeptide in pediatric patients with refractory solid tumors: a children’s oncology group report. J. Clin. Oncol.24(22),3678–3685 (2006).
    • 213  Klimek VM, Fircanis S, Maslak P et al.: Tolerability, pharmacodynamics, and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin. Cancer Res.14(3),826–832 (2008).
    • 214  Kosugi H, Ito M, Yamamoto Y et al.: In vivo effects of a histone deacetylase inhibitor, FK228, on human acute promyelocytic leukemia in NOD/Shi-scid/Scid mice. Jpn J. Cancer Res.92(5),529–536 (2001).
    • 215  Sasakawa Y, Naoe Y, Inoue T et al.: Effects of FK228, a novel histone deacetylase inhibitor, on human lymphoma U-937 cells in vitro and in vivo. Biochem. Pharmacol.64(7),1079–1090 (2002).
    • 216  Kelly WK, O’Connor OA, Krug LM et al.: Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol.23(17),3923–3931 (2005).
    • 217  O’connor OA, Heaney ML, Schwartz L et al.: Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J. Clin. Oncol.24(1),166–173 (2006).
    • 218  Modesitt SC, Sill M, Hoffman JS, Bender DP: A Phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a gynecologic oncology group study. Gynecol. Oncol.109(2),182–186 (2008).
    • 219  Garber K: HDAC inhibitors overcome first hurdle. Nat. Biotechnol.25(1),17–19 (2007).
    • 220  Plumb JA, Finn PW, Williams RJ et al.: Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol. Cancer Ther.2(8),721–728 (2003).
    • 221  Qian X, Larochelle WJ, Ara G et al.: Activity of PXD101, a histone deacetylase inhibitor, in preclinical ovarian cancer studies. Mol. Cancer Ther.5(8),2086–2095 (2006).
    • 222  Steele NL, Plumb JA, Vidal L et al.: A Phase I pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin. Cancer Res.14(3),804–810 (2008).
    • 223  Steele N, Finn P, Brown R, Plumb JA: Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br. J. Cancer100(5),758–763 (2009).
    • 224  Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet.21(1),103–107 (1999).
    • 225  Anzai H, Frost P, Abbruzzese L: Synergistic cytotoxicity with 2´-deoxy-5-azacytidine and topotecan in vitro and in vivo. Cancer Res.52(8),2180–2185 (1992).
    • 226  Strathdee G, Mackean MJ, Illand M, Brown R: A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene18(14),2335–2341 (1999).
    • 227  Branch P, Masson M, Aquilina G, Bignami M, Karran P: Spontaneous development of drug resistance: mismatch repair and p53 defects in resistance to cisplatin in human tumor cells. Oncogene19(28),3138–3145 (2000).
    • 228  Esteller M: Relevance of DNA methylation in the management of cancer. Lancet Oncol.4(6),351–358 (2003).
    • 229  Bakkenist CJ, Kastan MB: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature421(6922),499–506 (2003).
    • 230  Thirlwell C, Eymard M, Feber A et al.: Genome-wide DNA methylation analysis of archival formalin-fixed paraffin-embedded tissue using the Illumina Infinium HumanMethylation27 BeadChip. Methods (2010) (Epub ahead of print).
    • 231  Beck S, Rakyan VK: The methylome: approaches for global DNA methylation profiling. Trends Genet.24(5),231–237 (2008).
    • 232  Thu KL, Pikor LA, Kennett JY, Alvarez CE, Lam WL: Methylation analysis by DNA immunoprecipitation. J. Cell. Physiol.222(3),522–531 (2010),
    • 233  Rauch T, Pfeifer GP: Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab. Invest.85(9),1172–1180 (2005).
    • 234  Bernstein BE, Kamal M, Lindblad-Toh K et al.: Genomic maps and comparative analysis of histone modifications in human and mouse. Cell120(2),169–181 (2005).
    • 235  Ongenaert M, Van Neste L, De Meyer T, Menschaert G, Bekaert S, Van Criekinge W: PubMeth: a cancer methylation database combining text-mining and expert annotation. Nucleic Acids Res.36(Database issue),D842–D846 (2008).
    • 236  Strathdee G, Appleton K, Illand M et al.: Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes. Am. J. Pathol.158(3),1121–1127 (2001).
    • 237  Niederacher D, Yan HY, An HX, Bender HG, Beckmann MW: CDKN2a gene inactivation in epithelial sporadic ovarian cancer. Br. J. Cancer80(12),1920–1926 (1999).
    • 238  Liu Z, Wang LE, Wang L et al.: Methylation and messenger RNA expression of p15INK4b but not p16INK4a are independent risk factors for ovarian cancer. Clin. Cancer Res.11(13),4968–4976 (2005).
    • 239  Shivapurkar N, Toyooka S, Toyooka Ko et al.: Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types. Int. J. Cancer109(5),786–792 (2004).
    • 240  Cai LY, Abe M, Izumi S, Imura M, Yasugi T, Ushijima T: Identification of prtfdc1 silencing and aberrant promoter methylation of GPR150, ITGA8 and HOXD11 in ovarian cancers. Life sciences80(16),1458–1465 (2007).
    • 241  Shen DH, Chan KY, Khoo US et al.: Epigenetic and genetic alterations of p33ING1b in ovarian cancer. Carcinogenesis26(4),855–863 (2005).
    • 242  Czekierdowski A, Czekierdowska S, Szymanski M, Wielgos M, Kaminski P, Kotarski J: Opioid-binding protein/cell adhesion molecule-like (OPCML) gene and promoter methylation status in women with ovarian cancer. Neuro. Endocrinol. Lett.27(5),609–613 (2006).
    • 243  Choi YL, Kang SY, Shin YK et al.: Aberrant hypermethylation of rassf1a promoter in ovarian borderline tumors and carcinomas. Virchows Arch.448(3),331–336 (2006).
    • 244  Ma L, Zhang JH, Liu FR, Zhang X: Hypermethylation of promoter region of RASSF1A gene in ovarian malignant epithelial tumors. Zhonghua Zhong Liu Za Zhi27(11),657–659 (2005).
    • 245  Widschwendter A, Muller HM, Hubalek MM et al.: Methylation status and expression of human telomerase reverse transcriptase in ovarian and cervical cancer. Gynecol. Oncol.93(2),407–416 (2004).
    • 246  Okochi-Takada E, Nakazawa K, Wakabayashi M et al.: Silencing of the uchl1 gene in human colorectal and ovarian cancers. Int. J. Cancer119(6),1338–1344 (2006).
    • 247  Kantarjian HM, O’Brien S, Cortes J et al.: Results of decitabine (5-aza-2´deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer98(3),522–528 (2003).
    • 248  Tam KF, Liu VW, Liu SS et al.: Methylation profile in benign, borderline and malignant ovarian tumors. J. Cancer Res. Clin. Oncol.133(5),331–341 (2007).
    • 249  Graham JS, Kaye SB, Brown R: The promises and pitfalls of epigenetic therapies in solid tumours. Eur. J. Cancer45(7),1129–1136 (2009).
    • 250  Chuang JC, Yoo CB, Kwan JM et al.: Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2´-deoxycytidine. Mol. Cancer Ther.4(10),1515–1520 (2005).
    • 251  Kattan MW, Shariat SF, Andrews B et al.: The addition of interleukin-6 soluble receptor and transforming growth factor-β1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer. J. Clin. Oncol.21(19),3573–3579 (2003).
    • 252  Choan E, Segal R, Jonker D et al.: A prospective clinical trial of green tea for hormone refractory prostate cancer: an evaluation of the complementary/alternative therapy approach. Urologic Oncol.23(2),108–113 (2005).
    • 253  Jatoi A, Ellison N, Burch PA et al.: A Phase II trial of green tea in the treatment of patients with androgen independent metastatic prostate carcinoma. Cancer97(6),1442–1446 (2003).
    • 254  Yung R, Chang S, Hemati N, Johnson K, Richardson B: Mechanisms of drug-induced lupus. IV. Comparison of procainamide and hydralazine with analogs in vitro and in vivo. Arthritis Rheum.40(8),1436–1443 (1997).
    • 255  Mai A, Altucci L: Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int. J. Biochem. Cell Biol.41(1),199–213 (2009).
    • 256  Butler KV, Kozikowski AP: Chemical origins of isoform selectivity in histone deacetylase inhibitors. Curr. Pharm. Des.14(6),505–528 (2008).
    • 257  Qian X, Ara G, Mills E, Larochelle WJ, Lichenstein HS, Jeffers M: Activity of the histone deacetylase inhibitor belinostat (PXD101) in preclinical models of prostate cancer. Int. J. Cancer122(6),1400–1410 (2008).
    • 258  Hubbert C, Guardiola A, Shao R et al.: HDAC6 is a microtubule-associated deacetylase. Nature417(6887),455–458 (2002).
    • 259  Marchion D, Munster P: Development of histone deacetylase inhibitors for cancer treatment. Expert Rev. Anticancer Ther.7(4),583–598 (2007).
    • 260  Dyer ES, Paulsen MT, Markwart SM, Goh M, Livant DL, Ljungman M: Phenylbutyrate inhibits the invasive properties of prostate and breast cancer cell lines in the sea urchin embryo basement membrane invasion assay. Int. J. Cancer101(5),496–499 (2002).
    • 261  Gore SD, Samid D, Weng LJ: Impact of the putative differentiating agents sodium phenylbutyrate and sodium phenylacetate on proliferation, differentiation, and apoptosis of primary neoplastic myeloid cells. Clin. Cancer Res.3(10),1755–1762 (1997).
    • 262  Melchior SW, Brown LG, Figg WD et al.: Effects of phenylbutyrate on proliferation and apoptosis in human prostate cancer cells in vitro and in vivo. Int. J. Oncol.14(3),501–508 (1999).
    • 263  Svechnikova I, Gray SG, Kundrotiene J, Ponthan F, Kogner P, Ekstrom TJ: Apoptosis and tumor remission in liver tumor xenografts by 4-phenylbutyrate. Int. J. Oncol.22(3),579–588 (2003).
    • 264  Gottlicher M, Minucci S, Zhu P et al.: Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J.20(24),6969–6978 (2001).
    • 265  Garcia-Manero G, Assouline S, Cortes J et al.: Phase I study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood112(4),981–989 (2008).
    • 266  Tan J, Cang S, Ma Y, Petrillo RL, Liu D: Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J. Hematol. Oncol.3,5– (2010).
    • 301  Clinical Trials (NIH) www.clinicaltrials.gov