We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/1750743X.1.2.289

Much effort has been made over the last decade to use dendritic cells (DCs) in vaccines to induce specific antitumor immune responses. However, the great hope provided by in vitro and in vivo preclinical investigations was not translated to the clinic in terms of clinical efficacy. Thus, one of the challenges resides in optimizing DC-based therapy to give maximum clinical efficacy while using manufacturing processes that enable quality control and scale-up of consistent products. In this article, we review DC biology and the DC-based clinical trials performed to date and focus on the DC maturation status compatible with the goals of cancer immunotherapy. We also highlight the different approaches used in these clinical studies, such as the DC types or subtypes used and their preparation. Finally, we discuss the immunological and clinical outcomes in treated patients, with emphasis on the strategies that could be used to improve DC-based vaccination.

Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

Bibliography

  • Rosenberg SA: Progress in human tumour immunology and immunotherapy. Nature411,380–384 (2001).
  • Banchereau J, Briere F, Caux C et al.: Immunobiology of dendritic cells. Annu. Rev. Immunol.18,767–811 (2000).
  • Rosenberg SA, Yang JC, Restifo NP: Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10,909–915 (2004).
  • Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature392,245–252 (1998).
  • Tarbell KV, Yamazaki S, Steinman RM: The interactions of dendritic cells with antigen-specific, regulatory T cells that suppress autoimmunity. Semin. Immunol.18,93–102 (2006).
  • Hill M, Tanguy-Royer S, Royer P et al.: IDO expands human CD4+CD25high regulatory T cells by promoting maturation of LPS-treated dendritic cells. Eur. J. Immunol.37,3054–3062 (2007).
  • Wu L, Liu YJ: Development of dendritic-cell lineages. Immunity26,741–750 (2007).
  • Cella M, Sallusto F, Lanzavecchia A: Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol.9,10–16 (1997).
  • Albert ML, Jegathesan M, Darnell RB: Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat. Immunol.2,1010–1017 (2001).
  • 10  Matzinger P: Tolerance, danger, and the extended family. Annu. Rev. Immunol.12,991–1045 (1994).▪▪ Opinion paper that described the concept of the danger signal.
  • 11  Reis e Sousa C: Toll-like receptors and dendritic cells: for whom the bug tolls. Semin. Immunol.16,27–34 (2004).
  • 12  Binder RJ, Vatner R, Srivastava P: The heat-shock protein receptors: some answers and more questions. Tissue Antigens64,442–451 (2004).
  • 13  Skoberne M, Beignon AS, Bhardwaj N: Danger signals: a time and space continuum. Trends Mol. Med.10,251–257 (2004).
  • 14  Steinman RM, Hawiger D, Nussenzweig MC: Tolerogenic dendritic cells. Annu. Rev. Immunol.21,685–711 (2003).
  • 15  Trautmann A, Valitutti S: The diversity of immunological synapses. Curr. Opin. Immunol.15,249–254 (2003).
  • 16  Castellino F, Germain RN: Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu. Rev. Immunol.24,519–540 (2006).
  • 17  Scandella E, Men Y, Gillessen S, Forster R, Groettrup M: Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood100,1354–1361 (2002).
  • 18  Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S: ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature425,397–402 (2003).
  • 19  Yewdell JW, Reits E, Neefjes J: Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat. Rev. Immunol.3,952–961 (2003).
  • 20  Kloetzel PM, Ossendorp F: Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr. Opin. Immunol.16,76–81 (2004).
  • 21  Creusot RJ, Mitchison NA, Terazzini NM: The immunological synapse. Mol. Immunol.38,997–1002 (2002).
  • 22  Trinchieri G: Immunobiology of interleukin-12. Immunol. Res.17,269–278 (1998).
  • 23  de Jong EC, Smits HH, Kapsenberg ML: Dendritic cell-mediated T cell polarization. Springer Semin. Immunopathol.26,289–307 (2005).
  • 24  Mackey MF, Gunn JR, Maliszewsky C, Kikutani H, Noelle RJ, Barth RJ Jr: Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J. Immunol.161,2094–2098 (1998).
  • 25  Ridge JP, Di Rosa F, Matzinger P: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature393,474–478 (1998).
  • 26  Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ: T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature393,480–483 (1998).
  • 27  Kalady MF, Onaitis MW, Emani S, Abdel-Wahab Z, Tyler DS, Pruitt SK: Sequential delivery of maturation stimuli increases human dendritic cell IL-12 production and enhances tumor antigen-specific immunogenicity. J. Surg. Res.116,24–31 (2004).
  • 28  Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ: Dendritic cell immunotherapy: mapping the way. Nat. Med.10,475–480 (2004).
  • 29  Nestle FO, Farkas A, Conrad C: Dendritic-cell-based therapeutic vaccination against cancer. Curr. Opin. Immunol.17,163–169 (2005).
  • 30  Banchereau J, Palucka AK: Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol.5,296–306 (2005).
  • 31  Thomas-Kaskel AK, Waller CF, Schultze-Seemann W, Veelken H: Immunotherapy with dendritic cells for prostate cancer. Int. J. Cancer121,467–473 (2007).
  • 32  Schendel DJ: Dendritic cell vaccine strategies for renal cell carcinoma. Expert Opin. Biol. Ther.7,221–232 (2007).
  • 33  Pinzon-Charry A, Schmidt C, Lopez JA: Dendritic cell immunotherapy for breast cancer. Expert Opin. Biol. Ther.6,591–604 (2006).
  • 34  Reichardt VL, Brossart P: Dendritic cells in clinical trials for multiple myeloma. Methods Mol. Med.109,127–136 (2005).
  • 35  Duncan C, Roddie H: Dendritic cell vaccines in acute leukaemia. Best Pract. Res. Clin. Haematol.21,521–541 (2008).
  • 36  Atreya I, Neurath MF: Immune cells in colorectal cancer: prognostic relevance and therapeutic strategies. Expert Rev. Anticancer Ther.8,561–572 (2008).
  • 37  Luptrawan A, Liu G, Yu JS: Dendritic cell immunotherapy for malignant gliomas. Rev. Recent Clin. Trials3,10–21 (2008).
  • 38  Sallusto F, Lanzavecchia A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med.179,1109–1118 (1994).▪ Described for the first time an in vitro method to produce, from monocytes, large quantities of myeloid dendritic cells (DCs) that are usable in clinical approaches.
  • 39  Schuler G, Romani N: Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. Adv. Exp. Med. Biol.417,7–13 (1997).
  • 40  Berger TG, Feuerstein B, Strasser E et al.: Large-scale generation of mature monocyte-derived dendritic cells for clinical application in cell factories. J. Immunol. Methods268,131–140 (2002).
  • 41  Boccaccio C, Jacod S, Kaiser A, Boyer A, Abastado JP, Nardin A: Identification of a clinical-grade maturation factor for dendritic cells. J. Immunother.25,88–96 (2002).
  • 42  Royer PJ, Tanguy-Royer S, Ebstein F et al.: Culture medium and protein supplementation in the generation and maturation of dendritic cells. Scand. J. Immunol.63,401–409 (2006).
  • 43  Erdmann M, Dorrie J, Schaft N et al.: Effective clinical-scale production of dendritic cell vaccines by monocyte elutriation directly in medium, subsequent culture in bags and final antigen loading using peptides or RNA transfection. J. Immunother.30,663–674 (2007).
  • 44  Zou GM, Tam YK: Cytokines in the generation and maturation of dendritic cells: recent advances. Eur. Cytokine Netw.13,186–199 (2002).
  • 45  Caux C, Massacrier C, Dezutter-Dambuyant C et al.: Human dendritic Langerhans cells generated in vitro from CD34+ progenitors can prime naive CD4+ T cells and process soluble antigen. J. Immunol.155,5427–5435 (1995).▪ Described for the first time an in vitro method to produce from CD34+ progenitors, large quantities of myeloid DCs that are usable in clinical approaches.
  • 46  Banchereau J, Palucka AK, Dhodapkar M et al.: Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res.61,6451–6458 (2001).
  • 47  Paczesny S, Banchereau J, Wittkowski KM, Saracino G, Fay J, Palucka AK: Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J. Exp. Med.199,1503–1511 (2004).
  • 48  Fong L, Engleman EG: Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol.18,245–273 (2000).
  • 49  Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J: GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature360,258–261 (1992).
  • 50  Mortarini R, Anichini A, Di Nicola M et al.: Autologous dendritic cells derived from CD34+ progenitors and from monocytes are not functionally equivalent antigen-presenting cells in the induction of melan-A/Mart-1(27–35)-specific CTLs from peripheral blood lymphocytes of melanoma patients with low frequency of CTL precursors. Cancer Res.57,5534–5541 (1997).
  • 51  Ratzinger G, Baggers J, de Cos MA et al.: Mature human Langerhans cells derived from CD34+ hematopoietic progenitors stimulate greater cytolytic T lymphocyte activity in the absence of bioactive IL-12p70, by either single peptide presentation or cross-priming, than do dermal-interstitial or monocyte-derived dendritic cells. J. Immunol.173,2780–2791 (2004).
  • 52  Fong L, Hou Y, Rivas A et al.: Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl Acad. Sci. USA98,8809–8814 (2001).
  • 53  Maraskovsky E, Daro E, Roux E et al.: In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood96,878–884 (2000).
  • 54  Mohty M, Olive D, Gaugler B: Leukemic dendritic cells: potential for therapy and insights towards immune escape by leukemic blasts. Leukemia16,2197–2204 (2002).
  • 55  Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N: Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med.193,233–238 (2001).▪▪ Clinical study showing that injection of antigen-pulsed immature DCs in healthy donors leads to the induction of antigen-specific IL-10-producing T cells.
  • 56  De Vries IJ, Krooshoop DJ, Scharenborg NM et al.: Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res.63,12–17 (2003).
  • 57  McIlroy D, Gregoire M: Optimizing dendritic cell-based anticancer immunotherapy: maturation state does have clinical impact. Cancer Immunol. Immunother.52,583–591 (2003).
  • 58  Legler DF, Krause P, Scandella E, Singer E, Groettrup M: Prostaglandin E2 is generally required for human dendritic cell migration and exerts its effect via EP2 and EP4 receptors. J. Immunol.176,966–973 (2006).
  • 59  Jongmans W, Tiemessen DM, van Vlodrop IJ, Mulders PF, Oosterwijk E: Th1-polarizing capacity of clinical-grade dendritic cells is triggered by Ribomunyl® but is compromised by PGE2: the importance of maturation cocktails. J. Immunother.28,480–487 (2005).
  • 60  Boullart AC, Aarntzen EH, Verdijk P et al.: Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol. Immunother.57,1589–1597 (2008).
  • 61  Dauer M, Lam V, Arnold H et al.: Combined use of toll-like receptor agonists and prostaglandin E2 in the FastDC model: rapid generation of human monocyte-derived dendritic cells capable of migration and IL-12p70 production. J. Immunol. Methods.337,97–105 (2008).
  • 62  Lee JJ, Foon KA, Mailliard RB, Muthuswamy R, Kalinski P: Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J. Leukoc. Biol.84,319–325 (2008).
  • 63  Gigante M, Mandic M, Wesa AK et al.: Interferon-alpha (IFN-α)-conditioned DC preferentially stimulate type-1 and limit Treg-type in vitro T-cell responses from RCC patients. J. Immunother.31,254–262 (2008).
  • 64  Quillien V, Moisan A, Carsin A et al.: Biodistribution of radiolabelled human dendritic cells injected by various routes. Eur. J. Nucl. Med. Mol. Imaging32,731–741 (2005).
  • 65  Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK: Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res.59,56–58 (1999).
  • 66  Kalinski P, Schuitemaker JH, Hilkens CM, Wierenga EA, Kapsenberg ML: Final maturation of dendritic cells is associated with impaired responsiveness to IFN-γ and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J. Immunol.162,3231–3236 (1999).
  • 67  Langenkamp A, Messi M, Lanzavecchia A, Sallusto F: Kinetics of dendritic cell activation: impact on priming of Th1, Th2 and nonpolarized T cells. Nat. Immunol.1,311–316 (2000).
  • 68  Lanzavecchia A, Sallusto F: Regulation of T cell immunity by dendritic cells. Cell106,263–266 (2001).▪▪ Describes the concept of exhausted DCs.
  • 69  Keene JA, Forman J: Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J. Exp. Med.155,768–782 (1982).
  • 70  Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR: Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med.186,65–70 (1997).
  • 71  Wang JC, Livingstone AM: Cutting edge: CD4+ T cell help can be essential for primary CD8+ T cell responses in vivo. J. Immunol.171,6339–6343 (2003).
  • 72  Nestle FO, Alijagic S, Gilliet M et al.: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med.4,328–332 (1998).▪ First report of a DC-based clinical trials to treat melanoma patients.
  • 73  Brossart P, Heinrich KS, Stuhler G et al.: Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood93,4309–4317 (1999).
  • 74  Thurner B, Haendle I, Roder C et al.: Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med.190,1669–1678 (1999).
  • 75  Schmidt SM, Schag K, Muller MR et al.: Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood102,571–576 (2003).
  • 76  Schmidt SM, Schag K, Muller MR et al.: Induction of adipophilin-specific cytotoxic T lymphocytes using a novel HLA-A2-binding peptide that mediates tumor cell lysis. Cancer Res.64,1164–1170 (2004).
  • 77  Singh-Jasuja H, Emmerich NP, Rammensee HG: The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol. Immunother.53,187–195 (2004).
  • 78  Hsu FJ, Benike C, Fagnoni F et al.: Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med.2,52–58 (1996).
  • 79  Timmerman JM, Czerwinski DK, Davis TA et al.: Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood99,1517–1526 (2002).
  • 80  Reichardt VL, Okada CY, Liso A et al.: Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma – a feasibility study. Blood93,2411–2419 (1999).
  • 81  Reichardt VL, Milazzo C, Brugger W, Einsele H, Kanz L, Brossart P: Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica88,1139–1149 (2003).
  • 82  Mita AC, Mita MM, Nawrocki ST, Giles FJ: Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin. Cancer Res.14,5000–5005 (2008).
  • 83  Boczkowski D, Nair SK, Snyder D, Gilboa E: Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med.184,465–472 (1996).
  • 84  Dorfel D, Appel S, Grunebach F et al.: Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro-transcribed MUC1 RNA. Blood105,3199–3205 (2005).
  • 85  Grunebach F, Muller MR, Nencioni A, Brossart P: Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes. Gene Ther.10,367–374 (2003).
  • 86  Heiser A, Coleman D, Dannull J et al.: Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest.109,409–417 (2002).
  • 87  Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E: Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat. Biotechnol.16,364–369 (1998).
  • 88  Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G: Dendritic cells as vectors for therapy. Cell106,271–274 (2001).
  • 89  Palma M, Adamson L, Hansson L et al.: Development of a dendritic cell-based vaccine for chronic lymphocytic leukemia. Cancer Immunol. Immunother.57,1705–1710 (2008).
  • 90  Kyte JA, Gaudernack G: Immuno-gene therapy of cancer with tumour-mRNA transfected dendritic cells. Cancer Immunol. Immunother.55,1432–1442 (2006).
  • 91  Hao S, Moyana T, Xiang J: Review: cancer immunotherapy by exosome-based vaccines. Cancer Biother. Radiopharm.22,692–703 (2007).
  • 92  Chaput N, Flament C, Viaud S et al.: Dendritic cell derived-exosomes: biology and clinical implementations. J. Leukoc. Biol.80,471–478 (2006).
  • 93  Moiseyenko V, Imyanitov E, Danilova A, Danilov A, Baldueva I: Cell technologies in immunotherapy of cancer. Adv. Exp. Med. Biol.601,387–393 (2007).
  • 94  Schadendorf D, Paschen A, Sun Y: Autologous, allogeneic tumor cells or genetically engineered cells as cancer vaccine against melanoma. Immunol. Lett.74,67–74 (2000).
  • 95  Hus I, Rolinski J, Tabarkiewicz J et al.: Allogeneic dendritic cells pulsed with tumor lysates or apoptotic bodies as immunotherapy for patients with early-stage B-cell chronic lymphocytic leukemia. Leukemia19,1621–1627 (2005).
  • 96  Gregoire M, Ligeza-Poisson C, Juge-Morineau N, Spisek R: Anti-cancer therapy using dendritic cells and apoptotic tumour cells: pre-clinical data in human mesothelioma and acute myeloid leukaemia. Vaccine21,791–794 (2003).
  • 97  Albert ML, Sauter B, Bhardwaj N: Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature392,86–89 (1998).▪ First report showing in vitro antigen cross-presentation by human DCs.
  • 98  Steinman RM, Turley S, Mellman I, Inaba K: The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med.191,411–416 (2000).
  • 99  Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N: Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med.191,423–434 (2000).
  • 100  Boisteau O, Gautier F, Cordel S et al.: Apoptosis induced by sodium butyrate treatment increases immunogenicity of a rat colon tumor cell line. Apoptosis2,403–412 (1997).
  • 101  Masse D, Ebstein F, Bougras G, Harb J, Meflah K, Gregoire M: Increased expression of inducible HSP70 in apoptotic cells is correlated with their efficacy for antitumor vaccine therapy. Int. J. Cancer111,575–583 (2004).
  • 102  Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L: Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat. Immunol.9,486–494 (2008).
  • 103  Obeid M, Tesniere A, Ghiringhelli F et al.: Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med.13,54–61 (2007).
  • 104  Obeid M, Panaretakis T, Joza N et al.: Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis. Cell Death Differ.14,1848–1850 (2007).
  • 105  Apetoh L, Tesniere A, Ghiringhelli F, Kroemer G, Zitvogel L: Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res.68,4026–4030 (2008).
  • 106  Mackensen A, Krause T, Blum U, Uhrmeister P, Mertelsmann R, Lindemann A: Homing of intravenously and intralymphatically injected human dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells. Cancer Immunol. Immunother.48,118–122 (1999).
  • 107  Fong L, Brockstedt D, Benike C, Wu L, Engleman EG: Dendritic cells injected via different routes induce immunity in cancer patients. J. Immunol.166,4254–4259 (2001).
  • 108  Jonuleit H, Giesecke-Tuettenberg A, Tuting T et al.: A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int. J. Cancer93,243–251 (2001).
  • 109  Dhodapkar MV, Steinman RM, Sapp M et al.: Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J. Clin. Invest.104,173–180 (1999).
  • 110  Dhodapkar MV, Krasovsky J, Steinman RM, Bhardwaj N: Mature dendritic cells boost functionally superior CD8+ T-cell in humans without foreign helper epitopes. J. Clin. Invest.105,R9–R14 (2000).
  • 111  Altman JD, Moss PA, Goulder PJ et al.: Phenotypic analysis of antigen-specific T lymphocytes. Science274,94–96 (1996).
  • 112  Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A: A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods65,109–121 (1983).
  • 113  Jung T, Schauer U, Heusser C, Neumann C, Rieger C: Detection of intracellular cytokines by flow cytometry. J. Immunol. Methods159,197–207 (1993).
  • 114  Odunsi K, Qian F, Matsuzaki J et al.: Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc. Natl Acad. Sci. USA104,12837–12842 (2007).
  • 115  Palucka AK, Ueno H, Fay JW, Banchereau J: Taming cancer by inducing immunity via dendritic cells. Immunol. Rev.220,129–150 (2007).
  • 116  Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W: Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood96,3102–3108 (2000).
  • 117  Butterfield LH, Ribas A, Dissette VB et al.: Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin. Cancer Res.9,998–1008 (2003).
  • 118  Wierecky J, Muller MR, Wirths S et al.: Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Res.66,5910–5918 (2006).
  • 119  Aarntzen EH, Figdor CG, Adema GJ, Punt CJ, de Vries IJ: Dendritic cell vaccination and immune monitoring. Cancer Immunol. Immunother.57,1559–1568 (2008).
  • 120  Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD: Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol.3,991–998 (2002).
  • 121  Dreno B, Nguyen JM, Khammari A et al.: Randomized trial of adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage III melanoma. Cancer Immunol. Immunother.51,539–546 (2002).
  • 122  Labarriere N, Pandolfino MC, Gervois N et al.: Therapeutic efficacy of melanoma-reactive TIL injected in stage III melanoma patients. Cancer Immunol. Immunother.51,532–538 (2002).
  • 123  Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401,708–712 (1999).▪ First report to describe the two subsets of memory T cells: central memory and effector memory T cells.
  • 124  Geginat J, Sallusto F, Lanzavecchia A: Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4+ T cells. J. Exp. Med.194,1711–1719 (2001).
  • 125  Castellino F, Germain RN: Chemokine-guided CD4+ T cell help enhances generation of IL-6RαhighIL-7Rαhigh prememory CD8+ T cells. J. Immunol.178,778–787 (2007).
  • 126  Miller JD, van der Most RG, Akondy RS et al.: Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity28,710–722 (2008).
  • 127  Chiari R, Hames G, Stroobant V et al.: Identification of a tumor-specific shared antigen derived from an Eph receptor and presented to CD4 T cells on HLA class II molecules. Cancer Res.60,4855–4863 (2000).
  • 128  Larrieu P, Ouisse LH, Guilloux Y, Jotereau F, Fonteneau JF: A HLA-DQ5 restricted Melan-A/MART-1 epitope presented by melanoma tumor cells to CD4+ T lymphocytes. Cancer Immunol. Immunother.56,1565–1575 (2007).
  • 129  Hunder NN, Wallen H, Cao J et al.: Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med.358,2698–2703 (2008).
  • 201  Mater Medical Research Institute. Results of clinical trials using DC vaccines for cancer immunotherapy. www.mmri.mater.org.au/index.php?option=com_content&task=view&id=62&itemid=123
  • 202  Clinicaltrials.gov. A service of the US NIH. http://clinicaltrials.gov/ct2/search