We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection

    John RW Govan

    † Author for correspondence

    University of Edinburgh, Cystic Fibrosis Group, Centre for Infectious Diseases, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK.

    ,
    Alan R Brown

    University of Edinburgh, Cystic Fibrosis Group, Centre for Infectious Diseases, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK.

    &
    Andrew M Jones

    Wythenshawe Hospital, Adult Cystic Fibrosis Centre, Southmoor Road, Manchester M23 9LT, UK.

    Published Online:https://doi.org/10.2217/17460913.2.2.153

    The morbidity and mortality of patients with cystic fibrosis (CF) is primarily determined by chronic and debilitating lung infections caused by a surprisingly narrow spectrum of bacterial pathogens. Pseudomonas aeruginosa is by far the most prevalent life-threatening CF pathogen. In the absence of aggressive early therapy, it infects the majority of adult patients and determines long-term survival. The epidemiology of CF pulmonary infections continues to evolve. Amongst the most recent CF pathogens to have emerged are a group of closely related bacteria, known as the Burkholderia cepacia complex. These organisms are a particular challenge due to inherent antibiotic resistance, the potential for patient-to-patient spread, and the risk of ‘cepacia syndrome’, a rapid fulminating pneumonia sometimes accompanied by bacteremia. Strict cross-infection control was prompted by early epidemiological experience of the B. cepacia complex and is essential in the management of all CF pathogens.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Miller MB, Gilligan PH: Laboratory aspects of management of chronic pulmonary infections in patients with cystic fibrosis. J. Clin. Microbiol.41,4009–4015 (2003).
    • Ratjen F, Doring G: Cystic fibrosis. Lancet361,681–689 (2003).
    • Aaron SD: Pseudomonas aeruginosa and cystic fibrosis – a nasty bug gets nastier. Respiration73,16–17 (2006).
    • Lee TW, Brownlee KG, Denton M et al.: Reduction in prevalence of chronic Pseudomonas aeruginosa infection at a regional pediatric cystic fibrosis center. Pediatr. Pulmonol.37,104–110 (2004).
    • Vandamme P, Govan JRW, LiPuma JJ: Diversity and role of Burkholderia spp. In: Burkholderia: Molecular microbiology and genomics. Coenye T, Vandamme P (Eds). Horizon Bioscience, Norfolk, UK, 1–28 (2007).• New overview illustrating rapid progress in the first book dedicated to Burkholderia.
    • Cystic Fibrosis Trust Control of Infection Group: The Burkholderia cepacia complex: suggestions for prevention and infection control. Cystic Fibrosis Trust, Bromley, UK (2004).
    • Cystic Fibrosis Trust Control of Infection Group: Pseudomonas aeruginosa in people with cystic fibrosis: suggestions for prevention and infection control. Cystic Fibrosis Trust, Bromley, UK (2004).
    • Saiman L, Siegel J: Infection control in cystic fibrosis. Clin. Microbiol. Rev.17,57–71 (2004).• Comprehensive overview of the management of cystic fibrosis (CF) lung infections.
    • Isles A, Maclusky I, Corey M et al.: Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J. Pediatr.104,206–210 (1984).• Seminal paper describing ‘cepacia syndrome’ and the rising incidence of Burkholderia cepacia in CF.
    • 10  Govan JR, Hughes JE, Vandamme P: Burkholderia cepacia: medical, taxonomic and ecological issues. J. Med. Microbiol.45,395–407 (1996).• Useful early review summarizing evidence for Burkholderia cross-infection, medical and ecological issues and the background to the ET12 lineage.
    • 11  LiPuma JJ, Dasen SE, Nielson DW et al.: Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet336,1094–1096 (1990).• First molecular typing confirms spread among two individuals with CF.
    • 12  Vandamme P, Holmes B, Vancanneyt M et al.: Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int. J. Syst. Bacteriol.47,1188–1200 (1997).• Seminal taxonomic paper highlighting the diversity of ‘B. cepacia’ and the introduction of the B. cepacia complex (Bcc).
    • 13  Vanlaere E, Baldwin A, Mahenthiralingam E, Dowson CG, Payne GW, Vandamme P: Delineation of five new species within the Burkholderia cepacia complex. In: Proceedings of the 29th European Cystic Fibrosis Conference. Copenhagen, Denmark. J. Cyst. Fibros.5(S1),S35(2006).
    • 14  Govan JR, Brown PH, Maddison J et al.: Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet342,15–19 (1993).• First compelling evidence of patient-to-patient transmission by social contact including isolation of B. cenocepacia J2315 (CF5610) from index case.
    • 15  Johnson WM, Tyler SD, Rozee KR: Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J. Clin. Microbiol.32,924–930 (1994).
    • 16  Vandamme P, Holmes B, Coenye T et al.: Burkholderia cenocepacia sp. nov. – a new twist to an old story. Res. Microbiol.154,91–96 (2003).
    • 17  Coenye T, LiPuma JJ: Epidemiology, typing and population genetics of Burkholderia species. In: Burkholderia: Molecular Biology and Genomics. Coenye T, Vandamme P (Eds). Horizon Bioscience, Norfolk, UK, 29–52 (2007).
    • 18  Cazzola G, Amalfitano G, Tonolli E et al.: Burkholderia (Pseudomonas) cepacia epidemiology in a cystic fibrosis population: a genome finger-printing study. Acta Paediatr.85,554–557 (1996).
    • 19  Sibley CD, Rabin H, Surette M: Cystic fibrosis: a polymicrobial infectious disease. Future Microbiol.1(1),53–61 (2006).
    • 20  Govan JR: The Burkholderia cepacia complex and cytokine induction: an inflammatory tale. Pediatr. Res.54,294–296 (2003).• Informative editorial on the unusual inflammatory properties of Bcc lipolysaccharide.
    • 21  Hughes JE, Stewart J, Barclay GR et al.: Priming of neutrophil respiratory burst activity by lipopolysaccharide from Burkholderia cepacia. Infect. Immun.65,4281–4287 (1997).
    • 22  Davies J, Neth O, Alton E et al.: Differential binding of mannose-binding lectin to respiratory pathogens in cystic fibrosis. Lancet355,1885–1886 (2000).
    • 23  Drabick JA, Gracely EJ, Heidecker GJ et al.: Survival of Burkholderia cepacia on environmental surfaces. J. Hosp. Infect.32,267–276 (1996).
    • 24  Govan JR, Balandreau J, Vandamme P: Burkholderia cepacia – friend AND foe. ASM News66,124–125 (2000).• First evidence of clonality between clinical and environmental isolates of the Bcc.
    • 25  LiPuma JJ, Spilker T, Coenye T et al.: An epidemic Burkholderia cepacia complex strain identified in soil. Lancet359,2002–2003 (2002).• Evidence for clonality between epidemic Bcc and environmental isolate.
    • 26  Baldwin A, Mahenthiralingam E, Drevinek P et al.: Environmental Burkhoderia cepacia complex isolates in human infections. Emerg. Infect. Dis.13,458–461 (2007).• Multilocus sequence typing as possible alternative to pulsed-field gel electrophoresis.
    • 27  LiPuma JJ, Spilker T, Gill LH et al.: Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am. J. Respir. Crit Care Med.164,92–96 (2001).
    • 28  Reik R, Spilker T, LiPuma JJ: Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J. Clin. Microbiol.43,2926–2928 (2005).
    • 29  Speert DP, Henry D, Vandamme P et al.: Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg. Infect. Dis.8,181–187 (2002).
    • 30  Whiteford ML, Wilkinson JD, McColl JH et al.: Outcome of Burkholderia (Pseudomonas) cepacia colonisation in children with cystic fibrosis following a hospital outbreak. Thorax50,1194–1198 (1995).• Seminal paper emphasizing the potential virulence and spread of Burkholderia multivorans.
    • 31  Turton JF, Kaufmann ME, Mustafa N et al.: Molecular comparison of isolates of Burkholderia multivorans from patients with cystic fibrosis in the United Kingdom. J. Clin. Microbiol.41,5750–5754 (2003).
    • 32  Clode FE, Kaufmann ME, Malnick H et al.: Distribution of genes encoding putative transmissibility factors among epidemic and nonepidemic strains of Burkholderia cepacia from cystic fibrosis patients in the United Kingdom. J. Clin. Microbiol.38,1763–1766 (2000).
    • 33  McDowell A, Mahenthiralingam E, Dunbar KE et al.: Epidemiology of Burkholderia cepacia complex species recovered from cystic fibrosis patients: issues related to patient segregation. J. Med. Microbiol.53,663–668 (2004).
    • 34  Cunha MV, Leitao JH, Mahenthiralingam E et al.: Molecular analysis of Burkholderia cepacia complex isolates from a Portuguese cystic fibrosis center: a 7-year study. J. Clin. Microbiol.41,4113–4120 (2003).
    • 35  Kalish LA, Waltz DA, Dovey M et al.: Impact of Burkholderia dolosa on lung function and survival in cystic fibrosis. Am. J. Respir. Crit Care Med.173,421–425 (2006).• Evidence that virulence is not confined to Burkholderia cenocepacia and B. multivorans.
    • 36  Festini F, Buzzetti R, Bassi C et al.: Isolation measures for prevention of infection with respiratory pathogens in cystic fibrosis: a systematic review. J. Hosp. Infect.64,1–6 (2006).• Recent literature review supporting segregation for infection control of Bcc and Pseudomonas aeruginosa.
    • 37  LiPuma JJ: Preventing Burkholderia cepacia complex infection in cystic fibrosis: is there a middle ground? J. Pediatr.141,467–469 (2002).
    • 38  Campana S, Taccetti G, Ravenni N et al.: Transmission of Burkholderia cepacia complex: evidence for new epidemic clones infecting cystic fibrosis patients in Italy. J. Clin. Microbiol.43,5136–5142 (2005).
    • 39  Jones AM, Dodd ME, Govan JR et al.: Burkholderia cenocepacia and Burkholderia multivorans: influence on survival in cystic fibrosis. Thorax59,948–951 (2004).
    • 40  Mahenthiralingam E, Vandamme P, Campbell ME et al.: Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans.Clin. Infect. Dis.33,1469–1475 (2001).
    • 41  Chiarini L, Bevivino A, Dalmastri C et al.: Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol.14,277–286 (2006).• New review calling for the human hazards of Bcc biopesticides to be re-appraised.
    • 42  Govan JR, Nelson JW: Microbiology of lung infection in cystic fibrosis. Br. Med. Bull.48,912–930 (1992).
    • 43  Moskowitz SM, Gibson RL, Effmann EL: Cystic fibrosis lung disease: genetic influences, microbial interactions, and radiological assessment. Pediatr. Radiol.35,739–757 (2005).
    • 44  Govan JR, Deretic V: Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev.60,539–574 (1996).• Useful overview of the history and microbiology of these pathogens up to the 1990s.
    • 45  Burns JL, Gibson RL, McNamara S et al.: Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J. Infect. Dis.183,444–452 (2001).• Important study suggesting that P. aeruginosa infection occurs earlier in childhood than previously thought.
    • 46  Gibson RL, Burns JL, Ramsey BW: Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit Care Med.168,918–951 (2003).
    • 47  Farrell PM, Govan JR: Pseudomonas serology: confusion, controversy, and challenges. Thorax61,645–647 (2006).• Useful discussion of the problems of serology for detection of P. aeruginosa.
    • 48  Grothues D, Koopmann U, von der Hardt H et al.: Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J. Clin. Microbiol.26,1973–1977 (1988).
    • 49  Cheng K, Smyth RL, Govan JR et al.: Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet348,639–642 (1996).• First compelling molecular evidence for spread of P. aeruginosa among individuals with CF.
    • 50  Armstrong DS, Nixon GM, Carzino R et al.: Detection of a widespread clone of Pseudomonas aeruginosa in a pediatric cystic fibrosis clinic. Am. J. Respir. Crit Care Med.166,983–987 (2002).• Evidence for spread and virulence of P. aeruginosa in young CF individuals in Australia.
    • 51  Jones AM, Govan JR, Doherty CJ et al.: Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis clinic. Lancet358,557–558 (2001).
    • 52  O'Carroll MR, Syrmis MW, Wainwright CE et al.: Clonal strains of Pseudomonas aeruginosa in paediatric and adult cystic fibrosis units. Eur. Respir. J.24,101–106 (2004).
    • 53  Jones AM, Govan JR, Doherty CJ et al.: Identification of airborne dissemination of epidemic multiresistant strains of Pseudomonas aeruginosa at a CF centre during a cross infection outbreak. Thorax58,525–527 (2003).
    • 54  Panagea S, Winstanley C, Walshaw MJ et al.: Environmental contamination with an epidemic strain of Pseudomonas aeruginosa in a Liverpool cystic fibrosis centre, and study of its survival on dry surfaces. J. Hosp. Infect.59,102–107 (2005).
    • 55  Scott FW, Pitt TL: Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J. Med. Microbiol.53,609–615 (2004).
    • 56  Chambers D, Scott F, Bangur R et al.: Factors associated with infection by Pseudomonas aeruginosa in adult cystic fibrosis. Eur. Respir. J.26,651–656 (2005).
    • 57  Jones AM, Dodd ME, Doherty CJ et al.: Increased treatment requirements of patients with cystic fibrosis who harbour a highly transmissible strain of Pseudomonas aeruginosa. Thorax57,924–925 (2002).
    • 58  Geddes DM: Of isolates and isolation: Pseudomonas aeruginosa in adults with cystic fibrosis. Lancet358,522–523 (2001).• Segregation in the control of P. aeruginosa infection is contentious!
    • 59  Ramsey BW: To cohort or not to cohort: how transmissible is Pseudomonas aeruginosa? Am. J. Respir. Crit Care Med.166,906–907 (2002).• More on the Pseudomonas cross-infection control debate.
    • 60  Steinkamp G, Ullrich G: Different opinions of physicians on the importance of measures to prevent acquisition of Pseudomonas aeruginosa from the environment. J. Cyst. Fibros.2,199–205 (2003).
    • 61  Ullrich G, Wiedau-Gors S, Steinkamp G et al.: Parental fears of Pseudomonas infection and measures to prevent its acquisition. J. Cyst. Fibros.1,122–130 (2002).
    • 62  Al Aloul M, Crawley J, Winstanley C et al.: Increased morbidity associated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients. Thorax59,334–336 (2004).
    • 63  Al Aloul M, Miller H, Stockton P et al.: Acute renal failure in CF patients chronically infected by the Liverpool epidemic Pseudomonas aeruginosa strain (LES). J. Cyst. Fibros.4,197–201 (2005).
    • 64  Lechtzin N, John M, Irizarry R et al.: Outcomes of adults with cystic fibrosis infected with antibiotic-resistant Pseudomonas aeruginosa. Respiration73,27–33 (2006).
    • 65  Oliver A, Canton R, Campo P et al.: High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science288,1251–1254 (2000).• Seminal paper highlighting the unusually high incidence of hypermutable P. aeruginosa in chronic CF infections.
    • 66  Kenna DT, Doherty CJ, Foweraker J et al.: Hypermutability in environment Pseudomonas aeruginosa and in populations causing pulmonary infection in individuals with cystic fibrosis. Microbiology(2007) (In Press).
    • 67  Tredgett MW, Doherty C, Govan JR: Incidence of common pyocin types of Pseudomonas aeruginosa from patients with cystic fibrosis and chronic airways diseases. J. Med. Microbiol.32,169–172 (1990).• Early evidence that some P. aeruginosa populations are more likely to infect CF lungs than others.
    • 68  Smith EE, Buckley DG, Wu Z et al.: Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. USA103,8487–8492 (2006).• Seminal study that used longitudinal sequence data on P. aeruginosa to show importance of mutation and loss of gene function in the establishment of chronic infection.
    • 69  Hoiby N, Frederiksen B, Pressler T: Eradication of early Pseudomonas aeruginosa infection. J. Cyst. Fibros.4(Suppl. 2),49–54 (2005).
    • 70  Aris RM, Routh JC, LiPuma JJ et al.: Lung transplantation for cystic fibrosis patients with Burkholderia cepacia complex. Survival linked to genomovar type. Am. J. Respir. Crit. Care Med.164,2102–2106 (2001).• Important study linking post-transplant mortality to B. cenocepacia infection.
    • 71  De Soyza A, Morris K, McDowell A et al.: Prevalence and clonality of Burkholderia cepacia complex genomovars in UK patients with cystic fibrosis referred for lung transplantation. Thorax59,526–528 (2004).
    • 72  Tablan OC, Carson LA, Cusick LB et al.: Laboratory proficiency test results on use of selective media for isolating Pseudomonas cepacia from simulated sputum specimens of patients with cystic fibrosis. J. Clin. Microbiol.25,485–487 (1987).
    • 73  West SE, Zeng L, Lee BL et al.: Respiratory infections with Pseudomonas aeruginosa in children with cystic fibrosis: early detection by serology and assessment of risk factors. JAMA287,2958–2967 (2002).
    • 74  Holland DJ, Wesley A, Drinkovic D et al.: Cystic fibrosis and Burkholderia pseudomallei infection: an emerging problem? Clin. Infect. Dis.35,E138–E140 (2002).• Useful illustration of evolving CF microbiology and hazards of foreign travel.
    • 75  Schulin T, Steinmetz I: Chronic melioidosis in a patient with cystic fibrosis. J. Clin. Microbiol.39,1676–1677 (2001).
    • 76  Visca P, Cazzola G, Petrucca A et al.: Travel-associated Burkholderia pseudomallei infection (melioidosis) in a patient with cystic fibrosis: a case report. Clin. Infect. Dis.32,E15–E16 (2001).
    • 77  Vanlaere E, Hansraj F, Vandamme PA et al.: Growth in Stewart's medium is a simple, rapid and inexpensive screening tool for the identification of Burkholderia cepacia complex. J. Cyst. Fibros.5,137–139 (2006).• Useful methodology for large-scale screening of the Bcc.
    • 78  Hoiby N, Johansen HK: Isolation measures for prevention of infection with respiratory pathogens in cystic fibrosis: a systematic review? J. Hosp. Inf. DOI: 10.1016/j.jhin.2006.11.012 (2007) (Epub ahead of print).
    • 79  Festini F, Taccetti G: Evidence supporting isolation measures for prevention of infection with respiratory pathogens in cystic fibrosis. J. Hosp. Inf. DOI: 10.1016/j.jhin.2006.12.003 (2007) (Epub ahead of print).
    • 80  Vandamme P, Mahenthiralingam E, Holmes B et al.: Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J. Clin. Microbiol.38,1042–1047 (2000).
    • 81  Vermis K, Coenye T, LiPuma JJ et al.: Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov. Int. J. Syst. Evol. Microbiol.54,689–691 (2004).
    • 82  Coenye T, Mahenthiralingam E, Henry D et al.: Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int. J. Syst. Evol. Microbiol.51,1481–1490 (2001).
    • 83  Vandamme P, Henry D, Coenye T et al.: Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol. Med. Microbiol.33,143–149 (2002).
    • 84  Parsons YN, Panagea S, Smart CH et al.: Use of subtractive hybridization to identify a diagnostic probe for a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. J. Clin. Microbiol.40,4607–4611 (2002).• First description of molecular probes for identification of highly transmissible P. aeruginosa.
    • 85  Smart CH, Walshaw MJ, Hart CA et al.: Use of suppression subtractive hybridization to examine the accessory genome of the Liverpool cystic fibrosis epidemic strain of Pseudomonas aeruginosa. J. Med. Microbiol.55,677–688 (2006).
    • 86  Silva Filho LV, Levi JE, Oda Bento CN et al.: PCR identification of Pseudomonas aeruginosa and direct detection in clinical samples from cystic fibrosis patients. J. Med. Microbiol.48,357–361 (1999).
    • 87  Spilker T, Coenye T, Vandamme P et al.: PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J. Clin. Microbiol.42,2074–2079 (2004).• One of several important contributions to PCR analysis for identification of CF pathogens.
    • 88  Liu L, Coenye T, Burns JL et al.: Ribosomal DNA-directed PCR for identification of Achromobacter (Alcaligenes) xylosoxidans recovered from sputum samples from cystic fibrosis patients. J. Clin. Microbiol.40,1210–1213 (2002).
    • 89  Whitby PW, Carter KB, Burns JL et al.: Identification and detection of Stenotrophomonas maltophilia by rRNA-directed PCR. J. Clin. Microbiol.38,4305–4309 (2000).
    • 90  LiPuma JJ, Dulaney BJ, McMenamin JD et al.: Development of rRNA-based PCR assays for identification of Burkholderia cepacia complex isolates recovered from cystic fibrosis patients. J. Clin. Microbiol.37,3167–3170 (1999).
    • 91  Whitby PW, Pope LC, Carter KB et al.: Species-specific PCR as a tool for the identification of Burkholderia gladioli.J. Clin. Microbiol.38,282–285 (2000).
    • 92  Coenye T, Liu L, Vandamme P et al.: Identification of Pandoraea species by 16S ribosomal DNA-based PCR assays. J. Clin. Microbiol.39,4452–4455 (2001).
    • 93  Coenye T, Vandamme P, LiPuma JJ: Infection by Ralstonia species in cystic fibrosis patients: identification of R. pickettii and R. mannitolilytica by polymerase chain reaction. Emerg. Infect. Dis.8,692–696 (2002).
    • 94  Mahenthiralingam E, Bischof J, Byrne SK et al.: DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J. Clin. Microbiol.38,3165–3173 (2000).
    • 95  Mahenthiralingam E, Simpson DA, Speert DP: Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. J. Clin. Microbiol.35,808–816 (1997).
    • 96  Sajjan US, Sun L, Goldstein R et al.: Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers. J. Bacteriol.177,1030–1038 (1995).