We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Hemangioblasts from human embryonic stem cells generate multilayered blood vessels with functional smooth muscle cells

    Shi-Jiang Lu

    Advanced Cell Technology, 381 Plantation Street, Worcester, Massachusetts, MA 01605, USA.

    ,
    Yordanka Ivanova

    Advanced Cell Technology, 381 Plantation Street, Worcester, Massachusetts, MA 01605, USA.

    ,
    Qiang Feng

    Advanced Cell Technology, 381 Plantation Street, Worcester, Massachusetts, MA 01605, USA.

    ,
    Chenmei Luo

    Advanced Cell Technology, 381 Plantation Street, Worcester, Massachusetts, MA 01605, USA.

    &
    Robert Lanza

    † Author for correspondence

    Advanced Cell Technology, 381 Plantation Street, Worcester, Massachusetts, MA 01605, USA.

    Published Online:https://doi.org/10.2217/17460751.4.1.37

    Background: The formation and regeneration of functional vasculatures require both endothelial cells (ECs) and vascular smooth muscle cells (SMCs). Identification and isolation of progenitors with potential for both EC and SMC lineage differentiation from an inexhaustible source, such as human embryonic stem (hES) or induced pluripotent stem cells, will be desirable for cell replacement therapy. Method: Recently, we have developed a serum-free and animal feeder-free differentiation system to generate blast cells (BCs) from hESCs. These cells possess the characteristics of hemangioblasts in vitro and are capable of repairing damaged retinal vasculatures, restoring blood flow in hind-limb ischemia and reducing the mortality rate after myocardial infarction in vivo. We demonstrate here that BCs express markers of SMCs and differentiate into smooth muscle-like cells (SMLCs), in addition to ECs and hematopoietic cells. Results: When BCs from individual blast colonies were cultured in SMC medium, they differentiated into both ECs and SMLCs, which formed capillary-vascular-like structures after replating on Matrigel™. The SMLCs expressed SMC-specific markers (α-SM actin and calponin) and contracted upon treatment with carbachol. When implanted in nude mice, these cells formed microvasculature with ECs in Matrigel plaques. The BCs differentiated into both ECs and SMLCs, and incorporated into blood vessels after injection into ischemic tissue. Conclusion: These results demonstrate that hemangioblasts (BCs) generated from hESCs are tripotential and can provide a potentially inexhaustible source of cells for the treatment of human blood and vascular diseases.

    Bibliography

    • Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA: Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA98(19),10716–10721 (2001).
    • Lu SJ, Li F, Vida L, Honig GR: CD34+CD38- hematopoietic precursors derived from human embryonic stem cells exhibit an embryonic gene expression pattern. Blood103(11),4134–4141 (2004).
    • Wang L, Menendez P, Shojaei F et al.: Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J. Exp. Med.201(10),1603–1614 (2005).
    • Vodyanik MA, Bork JA, Thomson JA, Slukvin II: Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood105(2),617–626 (2005).
    • Chadwick K, Wang L, Li L et al.: Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood102(3),906–915 (2003).
    • Woll PS, Martin CH, Miller JS, Kaufman DS: Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J. Immunol.175(8),5095–5103 (2005).
    • Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R: Endothelial cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA99(7),4391–4396 (2002).
    • Huang H, Zhao X, Chen L et al.: Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture. Biochem. Biophys. Res. Commun.351(2),321–327 (2006).
    • Ferreira LS, Gerecht S, Shieh HF et al.: Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ. Res.101(3),286–294 (2007).
    • 10  Sone M, Itoh H, Yamahara K et al.: Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arterioscler. Thromb. Vasc. Biol.27(10),2127–2134 (2007).
    • 11  Wang ZZ, Au P, Chen T et al.: Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat. Biotechnol.25(3),317–318 (2007).
    • 12  Choi K: The hemangioblast: a common progenitor of hematopoietic and endothelial cells. J. Hematother. Stem Cell Res.11(1),91–101 (2002).
    • 13  Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G: A common precursor for hematopoietic and endothelial cells. Development125(4),725–732 (1998).
    • 14  Kennedy M, Firpo M, Choi K et al.: A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature386(6624),488–493 (1997).
    • 15  Wang L, Li L, Shojaei F et al.: Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity21(1),31–41 (2004).
    • 16  Zambidis ET, Peault B, Park TS, Bunz F, Civin CI: Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive and definitive stages resembling human yolk sac development. Blood106(3),860–870 (2005).
    • 17  Umeda K, Heike T, Yoshimoto M et al.: Identification and characterization of hemoangiogenic progenitors during cynomolgus monkey embryonic stem cell differentiation. Stem Cells24,1348–1358 (2006).
    • 18  Kennedy M, D’Souza SL, Lynch-Kattman M, Schwantz S, Keller G: Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood109(7),2679–2687 (2007).
    • 19  Lu SJ, Feng Q, Caballero S et al.: Generation of functional hemangioblasts from human embryonic stem cells. Nat. Methods4(6),501–509 (2007).
    • 20  Hungerford JE, Little CD: Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J. Vasc. Res.36(1),2–27 (1999).
    • 21  Conway EM, Collen D, Carmeliet P: Molecular mechanisms of blood vessel growth. Cardiovasc. Res.49(3),507–521 (2001).
    • 22  Carmeliet P: Biomedicine. Clotting factors build blood vessels. Science293(5535),1602–1604 (2001).
    • 23  Ema M, Faloon P, Zhang WJ et al.: Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev.17(3),380–393 (2003).
    • 24  D’Souza SL, Elefanty AG, Keller G: SCL/Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development. Blood105(10),3862–3870 (2005).
    • 25  Klimanskaya I, McMahon J: Approaches of derivation and maintenance of human ES cells: Detailed procedures and alternatives. In: Handbook of Stem Cells. Volume 1: Embryonic Stem Cells. Lanza R (Ed.). Elsevier/Academic Press, New York, USA 437–449 (2004).
    • 26  van TJ, Knaan-Shanzer S, van de Watering MJ et al.: Activation of cardiac and smooth muscle-specific genes in primary human cells after forced expression of human myocardin. Cardiovasc. Res.67(2),245–255 (2005).
    • 27  Caprioli A, Minko K, Drevon C, Eichmann A, eterlen-Lievre F, Jaffredo T: Hemangioblast commitment in the avian allantois: cellular and molecular aspects. Dev. Biol.238(1),64–78 (2001).
    • 28  Vogeli KM, Jin SW, Martin GR, Stainier DY: A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature443(7109),337–339 (2006).
    • 29  Cogle CR, Wainman DA, Jorgensen ML, Guthrie SM, Mames RN, Scott EW: Adult human hematopoietic cells provide functional hemangioblast activity. Blood103(1),133–135 (2004).
    • 30  Guo H, Fang B, Liao L et al.: Hemangioblastic characteristics of fetal bone marrow-derived Flk1+CD31-CD34- cells. Exp. Hematol.31(7),650–658 (2003).
    • 31  Loges S, Fehse B, Brockmann MA et al.: Identification of the adult human hemangioblast. Stem Cells Dev.13(3),229–242 (2004).
    • 32  Pelosi E, Valtieri M, Coppola S et al.: Identification of the hemangioblast in postnatal life. Blood100(9),3203–3208 (2002).
    • 33  Grant MB, May WS, Caballero S et al.: Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med.8(6),607–612 (2002).
    • 34  Bailey AS, Jiang S, Afentoulis M et al.: Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood103(1),13–19 (2004).
    • 35  Lu SJ, Luo C, Holton K, Feng Q, Ivanova Y, Lanza R: Robust generation of hemangioblastic progenitors from human embryonic stem cells. Regen. Med.3(5),693–704 (2008).
    • 36  Yu J, Vodyanik MA, Smuga-Otto K et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858),1917–1920 (2007).
    • 37  Takahashi K, Tanabe K, Ohnuki M et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5),861–872 (2007).
    • 38  Kitajima K, Tanaka M, Zheng J, Sakai-Ogawa E, Nakano T: In vitro differentiation of mouse embryonic stem cells to hematopoietic cells on an OP9 stromal cell monolayer. Meth. Enzymol.365,72–83 (2003).