We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Special Focus: Nanoparticles for Cancer Diagnosis & Therapeutics - Review

Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy

    Xiaohua Huang

    Georgia Institute of Technology, Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Atlanta, GA 30332, USA.

    ,
    Prashant K Jain

    Georgia Institute of Technology, Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Atlanta, GA 30332, USA.

    ,
    Ivan H El-Sayed

    Georgia Institute of Technology, Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Atlanta, GA 30332, USA.

    &
    Mostafa A El-Sayed

    † Author for correspondence

    Georgia Institute of Technology, Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Atlanta, GA 30332, USA.

    Published Online:https://doi.org/10.2217/17435889.2.5.681

    Recent years have seen tremendous progress in the design and study of nanomaterials geared towards biological and biomedical applications, most notable among these being the noble metal nanoparticles. In this review, we outline the surface-plasmon resonance-enhanced optical properties of colloidal gold nanoparticles directed towards recent biomedical applications with an emphasis on cancer diagnostics and therapeutics. Methods of molecular-specific diagnostics/detection of cancer, including strongly enhanced surface plasmon resonance light-scattering, surface-enhanced emission of gold nanorods and surface-enhanced Raman scattering, are described. We also discuss the plasmonic photothermal therapy of cancer achieved by using the strongly enhanced surface-plasmon resonance absorption of gold nanospheres and nanorods.

    Bibliography

    • Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos AP: Semiconductor nanocrystals as fluorescent biological labels. Science281(5385),2013–2016 (1998).
    • Chan WCW, Nie S: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science281(5385),2016–2018 (1998).
    • Mitchell P: Turning the spotlight on cellular imaging. Nat. Biotechnol.19,1013–1017 (2001).
    • Michalet X, Pinaud F, Lacoste TD et al.: Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Mol2(4),261–276 (2001).
    • Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S: Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol 13,40–46 (2002).
    • Wu X, Liu H, Liu J et al.: Immunofluorescent labeling of cancer marker Her2 and other cellular target with semiconductor quantum dots. Nat. Biotechnol.21,41–46 (2003).
    • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM: Long-term multiple color imaging of live cells using quantum dot bioconjugates: Nat. Biotechnol.21,47–51 (2003).
    • Gao X, Cui Y, Levenson RM, Chung LWK, Nie S: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.22(8),969–976 (2004).
    • Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS: Noninvasive imaging of quantum dots in mice. Bioconjugate Chem.15(1),79–86 (2004).
    • 10  Michalet X, Pinaud FF, Bentolila LA et al.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science307(5709),538–544 (2005).
    • 11  Medintz IL, Uyeda HT, Goldman ER, Mattoussi H: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.4(6),435–446 (2005).
    • 12  Vashist SK, Tewari R, Bajpai RP, Bharadwaj LM, Raiteri R: Review of quantum dot technologies for cancer detection and treatment. J. Nanotechnol.2,1–14 (2006).
    • 13  Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S: Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine1(2),1–9 (2006).
    • 14  Stechell CH: Magnetic separations in biotechnology – a review. J. Chem. Technol. Biotechnol.35(B),175–182 (1985).
    • 15  Olsvik O, Popovic T, Skjerve E et al.: Magnetic separation techniques in diagnostic microbiology. Clin. Microbiol. Rev.7(1),43–54 (1994).
    • 16  Pankhurst QA, Connolly J, Jones SK, Dobson J: Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys.36(13),R167–R181 (2003).
    • 17  Ito A, Shinkai M, Honda H, Kobayashi T: Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng.100(1),1–11 (2005).
    • 18  Bonnemain B: Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. J. Drug Target6(3),167–174 (1998).
    • 19  Josephson L: Magnetic nanoparticles for MR imaging. BioMEMS Biomed. Nanotechnol.1,227–237 (2006).
    • 20  Alexiou C, Jurgons R, Seliger C, Iro H: Medical applications of magnetic nanoparticles. J. Nanosci. Nanotechnol.6(9/10),2762–2768 (2006).
    • 21  Duguet E, Vasseur S, Mornet S, Devoisselle JM: Magnetic nanoparticles and their applications in medicine. Nanomedicine1(2),157–168 (2006).
    • 22  Mornet S, Vasseur S, Grasset F et al.: Magnetic nanoparticle design for medical applications. Prog. Solid State Chem.34(2–4),237–247 (2006).
    • 23  Berry CC, Curtis ASG: Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys.36,R198–R206 (2003).
    • 24  Josephson L: Magnetic nanoparticles for MR imaging. In: BioMEMS and Biomedical Nanotechnology Volume I Biological and Biomedical Nanotechnology. Ferrari M, Lee AP, Lee LJ. (Eds) Springer, NY, USA 227–237 (2006).
    • 25  Häfeli UO, Chastellain M: Magnetic nanoparticles as drug carriers. In: Nanoparticulates as Drug Carriers. Torchilin VP (Ed.), Imperial College Press, London, UK, 397–418 (2006).
    • 26  Duguet E, Vasseur S, Mornet S et al.: Towards a versatile platform based on magnetic nanoparticles for in vivo applications. Bull. Mater. Sci.29(6),581–586 (2006).
    • 27  Dobson J: Magnetic nanoparticles for drug delivery. Drug Del. Res.67(1),55–60 (2006).
    • 28  Jurgons R, Seliger C, Hilpert A, Trahms L, Odenbach S, Alexiou C: Drug loaded magnetic nanoparticles for cancer therapy. J. Phys. Condens. Matter18,S2893–S2902 (2006).
    • 29  Hilger I, Hiergeist R, Hergt R,Winnefeld K, Schubert H, Kaiser WA: Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study. Invest. Radiol.37(10),580–586 (2002).
    • 30  Shinkai M: Functional magnetic particles for medical application. J. Biosci. Bioeng.94(6),606–613 (2002).
    • 31  Mornet S, Vasseur S, Grasset F, Duguet E: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem.14,2161–2175 (2004).
    • 32  Häfeli UO: Magnetically modulated therapeutic systems. Inter. J. Pharm.277,19–24 (2004).
    • 33  Pradhan P, Giri J, Samanta G et al.: Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J. Biomed. Mater. Res. Part B Appl. Biomater.81(1),12–22 (2006).
    • 34  Kreuter J: Drug targeting with nanoparticles. Eur. J. Drug Metabol. Pharm.19(3),253–256 (1994).
    • 35  Kwon GS, Kataoka K: Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Del. Rev.16(2),295–309 (1995).
    • 36  Langer R: Drug delivery and targeting. Nature392(Suppl. 6679),5–10 (1998).
    • 37  MuÈller RH, MaÈder K, Gohla S: Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur. J. Pharm. Biopharm.50,161–177 (2000).
    • 38  Pillai O, Panchagnula R: Polymers in drug delivery. Curr. Opin. Chem. Biol.5(4),447–451 (2001).
    • 39  Sershen S, West J: Implantable, polymeric systems for modulated drug delivery. Adv. Drug Del. Rev.54(9),1225–1235 (2002).
    • 40  Hillaireau H, Couvreur P: Polymeric nanoparticles as drug carriers. In: Polymers in drug delivery. Uchegbu IF (Ed.), CRC Press LLC, Boca Raton, FL, USA, 101–110 (2006).
    • 41  Uchegbu IF: Pharmaceutical nanotechnology: polymeric vesicles for drug and gene delivery. Expert Opin. Drug Del.3(5),629–640 (2006).
    • 42  Moghimi SMVE, Garcia ML, Al-Hanbali OAR, Rutt KJ: Polymeric nanoparticles as drug carriers and controlled release implant devices. In: Nanoparticulates as Drug Carriers. Torchilin VP (Ed.), Imperial College Press, London, UK, 29–42 (2006).
    • 43  Shi Kam NW, O’Connell M, Wisdom JA, Dai H: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA102(33),11600–11605 (2005).
    • 44  Bianco A, Kostarelos K, Partidos CD, Prato M: Biomedical applications of functionalized carbon nanotubes. Chem. Commun.5,571–577 (2005).
    • 45  Bekyarova E, Ni Y, Malarkey EB et al.: Applications of carbon nanotubes in biotechnology and biomedicine. J. Biomed Nanotechnol.1(1),3–17 (2005).
    • 46  Lin Y, Taylor S, Li H et al.: Advances toward bioapplications of carbon nanotubes. J. Mater. Chem.14(4),527–541 (2004).
    • 47  Link S, El-Sayed MA: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B103(40),8410–8426 (1999).
    • 48  Link S, El-Sayed MA: Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem.19(3),409–453 (2000).
    • 49  El-Sayed MA: Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res.34(4),257–264 (2001).
    • 50  Link S, El-Sayed MA: Optical properties and ultrafast dynamics of metallic nanocrystals. Ann. Rev. Phys. Chem.54,331–366 (2003).
    • 51  Masala O, Seshadri R: Synthesis routes for large volumes of nanoparticles. Annu. Rev. Mater. Res.34,41–81 (2004).
    • 52  Hao E, Schatz G, Hupp J: Synthesis and optical properties of anisotropic metal nanoparticles. J. Fluor.14(4),331–341 (2004).
    • 53  Daniel MC, Astruc, D: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.104,293–346 (2004).
    • 54  Hutter E, Fendler JH: Exploitation of localized surface plasmon resonance. Adv. mater.16(19),1685–1706 (2004).
    • 55  Xia Y, Halas NJ: Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull30,338–348 (2005).
    • 56  Murphy CJ, Sau TK, Gole AM et al.: Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B109(29),13857–13870 (2005).
    • 57  P´erez-Juste J, Pastoriza-Santosa I, Luis M: Liz-Marz´an A, Mulvaney P: Gold nanorods: Synthesis, characterization and applications. Coord Chem. Rev.249,1870–1901 (2005).
    • 58  Kelly KL, Coronado E, Zhao LL, Schatz GC: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B107(3),668–677 (2003).
    • 59  Hirsch LR, Stafford RJ, Bankson JA et al.: Nanoshell-mediated near infrared thermal therapy of tumors under MR guidance. Proc. Natl Acad. Sci. USA100(23),13549–13554 (2003).
    • 60  Loo CH, Lin A, Hirsch LR et al.: Nanoshell-enabled photonics-based imaging and therapy of cancer: Technol. Cancer Res. Treat.3,33–40 (2004).
    • 61  O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL: Photo-thermal Tumor Ablation in mice using near infrared absorbing nanoshells. Cancer Lett.209(2),171–176 (2004).
    • 62  Loo C, Lowery A, Halas NJ, West JL, Drezek R: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett.5(4),709–711 (2005).
    • 63  Chen J, Saeki F, Wiley BJ et al.: Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett.5(3),473–477 (2005).
    • 64  Chen J, Wang D, Xi J et al.: Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett.7(5),1318–1322 (2007).
    • 65  Turkevich J, Stvenson PC, Hillier J: A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc. Farad. Soc.11,55–75 (1951).
    • 66  Frens G: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.241,20–22 (1973).
    • 67  Thaxton CS, Rosi NL, Mirkin CA: Optically and chemically encoded nanoparticle materials for DNA and pprotein detection. MRS Bull30(5),376–380 (2005).
    • 68  Glomm WR: Functionalized gold nanoparticles for applications in bionanotechnology. J. Disp. Sci. Technol.26(3),389–414 (2005).
    • 69  Paciotti GF, Kingston DG, Tamarkin L: Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res.67(1),47–54 (2006).
    • 70  Niidome Y, Niidome T: Surface modification of gold nanorods for bio-application. Jasco Report48(2),37–41 (2006).
    • 71  Han G, Ghosh P, Rotello VM: Functionalized gold nanoparticles for drug delivery. Nanomedicine2(1),113–123 (2007).
    • 72  Yu YY, Chang SS, Lee CL, Wang CRC: Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B101(34),6661–6664 (1997).
    • 73  Jana NR, Gearheart L, Murphy CJ: Seed-mediated growth approach for shape- controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater.13(18),1389–1393 (2001).
    • 74  Nikoobakht B, El-Sayed MA: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater.15(10),1957–1962 (2003).
    • 75  Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD: Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small1(3),325–327 (2005).
    • 76  Mie G: Contribution to the optics of turbid media, especially colloidal metal suspensions. Ann. Phys.25,377–445 (1908).
    • 77  Papavassiliou GC: Optical properties of small inorganic and organic metal particles. Prog. Solid State Chem.12,185–271 (1979).
    • 78  Bohren CF, Huffman DR: Absorption and scattering of light by small particles. Wiley, NY, USA (1983).
    • 79  Kreibig U, Vollmer M: Optical Properties of Metal Clusters. Springer, Berlin, Germany. (1995).
    • 80  Gans R: Form of ultramicroscopic particles of silver. Ann. Phys.47,270–284 (1915).
    • 81  Link S, Mohamed MB, El-Sayed MA: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B103(16),3073–3077 (1999).
    • 82  Link S, El-Sayed MA: Additions and corrections to simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B109(20),10531–10532 (2005).
    • 83  Kerker M: The scattering of light and other electromagnetic radiation. Academic Press, NY, USA (1969).
    • 84  Van De Hulst HC: Light Scattering by Small Particles. Dover, NY, USA (1981).
    • 85  Yguerabide J, Yguerabide EE: Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. I. Theory. Anal. Biochem.262,137–156 (1998).
    • 86  Yguerabide J, Yguerabide EE: Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. II. Experimental characterization. Anal. Biochem.262,157–186 (1998).
    • 87  Yguerabide J, Yguerabide EE: Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J. Cell. Biochem. Suppl.37,71–81 (2001).
    • 88  Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG: Photoinduced conversion of silver nanospheres to nanoprisms. Science294(5548),1901–1903 (2001).
    • 89  Sönnichsen C, Franzl T, Wilk T, Plessen GV, Feldmann J: Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett.88(7),077402–077406 (2002).
    • 90  Raschke G, Kowarik S, Franzl T, Sonnichsen C, Klar TA, Feldmann J: Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett.3(7),935–938 (2003).
    • 91  Orendorff CJ, Baxter SC, Goldsmith EC, Murphy CJ: Light scattering from gold nanorods: tacking material deformation. Nanotechnology 16(11),2601–2605 (2005).
    • 92  Aslan K, Lakowicz, JR, Geddes CD: Nanogold plasmon resonance-based glucose sensing. 2. Wavelength-ratiometric resonance light scattering. Anal. Chem.77(7),2007–2014 (2005).
    • 93  Orendorff CJ, Sau Tapan K, Murphy CJ Shape-dependent plasmon-resonant gold nanoparticles. Small2(5),636–639 (2006).
    • 94  Zhu J, Huang L, Zhao J et al.: Shape dependent resonance light scattering properties of gold nanorods.Mater. Sci. Eng. B 121,199–203 (2005).
    • 95  Jain PK, Lee KS, El-Sayed IH, El-Sayed MA: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B110(14),7238–7248 (2006).
    • 96  Lee KS, El-Sayed MA: Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive Index. J. Phys. Chem. B109(43),20331–20338 (2005).
    • 97  Sokolov K, Aaron J, Hsu B et al.: Optical systems for in vivo molecular imaging of cancer. Technol. Cancer Res. Treat.2(6),491–504 (2003).
    • 98  Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richartz-Kortum R: Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res.63,1999–2004 (2003).
    • 99  Raub CB, Orwin EJ, Haskell R Immunogold labeling to enhance contrast in optical coherence microscopy of tissue engineered corneal constructs. Conf. Proc. IEEE Eng. Med. Biol. Soc.2,1210–1213 (2004).
    • 100  El-Sayed IH, Huang X, El-Sayed MA: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett.5(5),829–834 (2005).
    • 101  Huang X, El-Sayed IH, El-Sayed MA Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods: J. Am. Chem. Soc.128(6),2115–2120 (2006).
    • 102  Aaron JS, Oh J, Larson TA, Kumar S, Milner TE, Sokolv KV: Increased optical contrast in imaging of epidermal growth factor receptor using magneticaly actuated hybrid gold/iron oxide nanoparticles. Optics Express14(26),12930–12943 (2006).
    • 103  Aslan K, Lakowicz JR, Geddes CD: Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol.9,538–544 (2005).
    • 104  Taton TA, Lu G, Mirkin CA: Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J. Am. Chem. Soc.123,5164–5165 (2001).
    • 105  Zsigmondy RA: Colloids and the ultramicroscope-A manual of colloid chemistry and ultramicroscopy. John Wiley and Sons, Inc., NY, USA (1914).
    • 106  Schultz S, Smith DR, Mock JJ, Schultz DA: Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl Acad. Sci. USA97(3),996–1001 (2000).
    • 107  Bao P, Frutos AG, Greef C et al.: High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering. Anal. Chem.74(8),1792–1797 (2002).
    • 108  Schatz DA: Plasmon resonant particles for biological detection. Curr. Opin.44,13–22 (2003).
    • 109  Mooradian A: Photoluminescence of metals. Phys. Rev. Lett.22,185–187 (1969).
    • 110  Boyd GT, Yu ZH, Shen YR: Photoinnduced induced luminescennce from the nobel metals and its enhancement on roughened surfaces. Phys. Rev. B: Condens. Matter33(12),7923–7936 (1986).
    • 111  Wilcoxon JP, Martin JE, Parsapour F, Wiedenman B, Kelley DF: Photoluminescence from nanosized gold clusters: J. Chem. Phys.108(21),9137–9143 (1998).
    • 112  Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff TG, Whetten RL: Visible to infrared luminescence from a 28-atom gold cluster. J. Phys. Chem. B106(13),3410–3415 (2002).
    • 113  Zheng J, Zhang C, Dickson RM: Highly fluorescent,water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett.93(7),077402.1–077402.4 (2004).
    • 114  Mohamed MB, Volkov V, Link S, El-Sayed MA: The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett.317(6),517–523 (2000).
    • 115  Eustis S, El-Sayed MA: Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study. J. Phys. Chem. B109(34),16350–16356 (2005).
    • 116  Li CZ, Male KB, Hrapovic S, Luong JHT: Fluorescence properties of gold nanorods and their application for DNA biosensing. Chem. Commun.31,3924–3926 (2005).
    • 117  Bouhelier A, Beversluis MR, Novotny L: Characterization of nanoplasmonic structures by locally excited photoluminescence. Appl. Phys. Lett.83(24),5041–5043 (2003).
    • 118  Imura K, Nagahara T, Okamoto H: Plasmon mode imaging of single gold nanorods. J. Am. Chem. Soc.126(40),12730–12731 (2004).
    • 119  Wang H, Huff TB, Zweifel DA et al.: In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl Acad. Sci. USA102(44),15752–15756 (2005).
    • 120  Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A: Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett.7(4),941–945 (2007).
    • 121  Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K: On the cyto-toxicity caused by quantum dots. Microbiol. Immunol.48(9),669–675 (2004).
    • 122  Fleischman M, Hendra PJ, Mcquillan AJ: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett.26(2),163–166 (1974).
    • 123  Jeanmaire DL, Van Duyne RP: Surface Raman spectroscopy. 1. Heterocyclic, amromatic, and alaphatic-amines adsorbed on anodized silver electrode. J. Electroanal. Chem.84,1–20 (1977).
    • 124  Albercht M, Creighton JA: Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc.99,5215–5217 (1977).
    • 125  Persson BNJ: On the theory of surface-enhanced Raman scattering. Chem. Phys. Lett.82(3),561–565 (1981).
    • 126  Chang RK, Furtak TE: Surface enhanced Raman scattering. Plenum Press, NY, USA (1982)
    • 127  Schatz GC: Theoretical studies of surface enhanced Raman scattering. Acc. Chem. Res.17,370–376 (1984).
    • 128  Moskovits M: Surface enhanced spectroscopy. Rev. Mod. Phys.57(3),783–826 (1985).
    • 129  Garrell RL: Surface-Enhanced Raman Spectroscopy. Anal. Chem.61(6),401A–411A (1989).
    • 130  Chumanov GD, Efremov RG, Nabiev IR: Surface-enhanced Raman spectroscopy of biomolecules. I: Water-soluble proteins, dipeptides and amino acids J. Raman spectrosc.21(1),43–48 (1989).
    • 131  Cotton TM, Kim JH, Chumanov GD: Application of surface-enhanced Raman spectroscopy to biological systems. J. Raman Spectrosc.22(12),729–742 (1991).
    • 132  Otto A, Mrozek I, Grabhorn H, Akemann W: Surface-enhanced Raman scattering: J. Phys. Condens. Matter4(5),1143–1212 (1992).
    • 133  Garrell RL. PJ, Cotton TM. Fundamentals and Applications of Surface Raman Spectroscopy. VCH Publishers Inc, FL, USA (1993).
    • 134  Nabiev I, Chourpa I, Manfait M: Applications of Raman and surface enhanced Raman scattering spectroscopy in medicine. J. Raman Spectrosc.25,13–23 (1994).
    • 135  Campion A, Kambhampati, P: Surface-enhanced Raman scattering. Chem. Soc. Rev.27,241–250 (1998).
    • 136  Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS: Surface-enhanced non-linear Raman scattering at the single-molecule level. Chem. Phys.247,155–162 (1999).
    • 137  Tian ZQ, Ren R, Wu DY: Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B106(37),9463–9483 (2002).
    • 138  Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS: Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter14(18),R597–R624 (2002).
    • 139  Kneipp K, Moskovits M, Kneipp H: Surface-enhanced raman scattering: physics and applications. NY, USA Springer (2006).
    • 140  Stuart DA, Haes AJ, Yonzon CR, Hicks EM, Van Duyne RP: Biological applications of localised surface plasmonic phenomenae. IEE Proc-Nanobiotechnol.152(1),13–32 (2005).
    • 141  Haynes CL, Yonzon CR, Zhang X, Van Duyne RP: Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc.36,471–484 (2005).
    • 142  Manfait M, Morjani H, Millot JM, Debal V, Angiboust JF, Nabiev I: Drug target interactions on a single living cell. An approach by optical microspectroscopy. Proc. Soc. Photo Opt. Instrum. Eng.-Int Soc Opt Eng 1403,695–707 (1991).
    • 143  Nabiev IR, Morjani H, Manfait M: Selective analysis of antitumor drug interaction with living cancer cells as probed by surface-enhanced Raman spcctros copy. Eur. Biophys. J.19(6),311–316 (1991).
    • 144  Manfait M, Nabiev I, Morjani H: Molecular events on single living cancer cells as studied by microspectrofluorometry and micro-SERS Raman spectroscopy. J. Cell Pharm.3(1),120–125 (1992).
    • 145  Morjani H, Riou JF, Nabiev I, Lavelle F, Manfait M: Molecular and cellular interactions between intoplicine, DNA, and topoisomerase II studied by surface-enhanced Raman scattering spectroscopy. Cancer Res.53,4784–4790 (1993).
    • 146  Kneipp K, Haka AS, Kneipp H et al.: Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl. Spectrosc.56(2),150–154 (2002).
    • 147  Kneipp J, Kneipp H, Rice WL, Kneipp K: Optical probes for biological applications based on Ssurface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal. Chem.77(8),2381–2385 (2005).
    • 148  Tang HW, Yang XB, Kirkham J, Smith DA: Probing Intrinsic and Extrinsic Components in Single Osteosarcoma Cells by Near-Infrared Surface-Enhanced Raman Scattering. Anal. Chem.79(10),3646–3653 (2007).
    • 149  Nabiev I, Chourpa I, Manfait M: comparative studies of antitumor DNA intercalating agents, aclacinomycin and saintopin, by means of surface-enhanced raman scattering spectroscopy. J. Phys. Chem.98(4),1344–1350 (1994).
    • 150  Chourpa I, Morjani H, Riou JF, Manfait M: Intracellular molecular interactions of antitumor drug amsacrine (m-AMSA) as revealed by surface-enhanced Raman spectroscopy. FEBS Lett.397(1),61–64 (1996).
    • 151  Beljebbar A, Morjani H, Angiboust JF, Sockalingum GD, Polissiou M, Manfait M: Molecular and cellular interaction of the differentiating antitumour agent dimethylcrocetin with nuclear retinoic acid receptor as studied by near-infrared and visible SERS spectroscopy. J. Raman Spectrosc.28(2–3),159–163 (1997).
    • 152  Allain LR, Vo-Dinh T: Surface-enhanced Raman scattering detection of the breast cancer susceptibility gene BRCA1 using a silver-coated microarray platform. Anal. Chim. Acta469(1),149–154 (2002).
    • 153  Vo-Dinh T, Allain LR, Stokes DL: Cancer gene detection using surface-enhanced Raman scattering (SERS). J. Raman Spectrosc.33,511–516 (2002).
    • 154  Culha M, Stokes D, Allain LR, Vo-Dinh T: Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics. Anal. Chem.75(22),6196–6201 (2003).
    • 155  Hawi SR, Rochanakij S, Adar F, Campbell WB, Nithipatikom K: Detection of membrane-bound enzymes in cells using immunoassay and Raman microspectroscopy. Anal. Biochem.259(2),212–217 (1998).
    • 156  Seballos L, Zhang JZ, Sutphen R: Surface-enhanced Raman scattering detection of lysophosphatidic acid. Anal. Bioanal. Chem.383(5),763–767 (2005).
    • 157  Ansari DO, Stuart DA, Nie S: Surface-enhanced Raman spectroscopic detection of cancer biomarkers in intact cellular specimens: Proc. Soc. Photo Opt. Instrum. Eng. – Inter. Soc. Opt. Eng.569982–90 (2005).
    • 158  Kim JH, Kim JS, Choi H et al.: Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal. Chem.78(19),6967–6973 (2006).
    • 159  Lee S, Kim S, Choo J et al.: Biological imaging of HEK293 cells expressing PLCç1 using surface-enhanced Raman microscopy. Anal. Chem.79(3),916–922 (2007).
    • 160  Schlücker S, Küstner B, Punge A, Bonfig R, Marx A, Ströbel P: Immuno-Raman microspectroscopy: In situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J. Raman Spectrosc.37,719–721 (2006).
    • 161  Huang X, El-Sayed IH, Qian W, El-Sayed MA: Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp and polarized surface raman spectra: a potential cancer diagnostic marker. Nano Lett.7(6),1591–1597 (2007).
    • 162  Kooij ES, Poelsema B: Shape and size effects in the optical properties of metallic nanorods. Phys. Chem. Chem. Phys.8,3349–3357 (2006).
    • 163  Du H, Fuh RA, Li J, Corkan A, Lindsey JS: PhotochemCAD††: A computer-aided design and research tool in photochemistry: Photochem. Photobiol.68(2),141–142 (1998).
    • 164  Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP: Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J.84(6),4023–4032 (2003).
    • 165  Zharov VP, Galitovsky V, Viegas M: Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl. Phys. Lett.83(24),4897–4899 (2003).
    • 166  Zharov VP, Galitovskaya E, Viegas M: Photothermal guidance for selective photothermolysis with nanoparticles. Proc. Soc. Photo Opt. Instrum. Eng.5319,291–300 (2004).
    • 167  Zharov VP, Galitovskaya EN, Johnson C, Kelly T: Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg. Med.37,219–226 (2005).
    • 168  El-Sayed IH, Huang X, El-Sayed MA: Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett.239(1),129–135 (2006).
    • 169  Huang X, Jain PK, El-Sayed IH, El-Sayed MA: Determination of the minimum temperature required for selective photothermal destruction of cancer cells using immunotargeted gold nanoparticles. Photochem. Photobiol.82(2),412–417 (2006).
    • 170  Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S: Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods. Chem. Lett.35(5),500–501 (2006).
    • 171  Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A: Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine2(1),125–132 (2007).