We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Peptides and metallic nanoparticles for biomedical applications

    Marcelo J Kogan

    † Author for correspondence

    Departamento de Química Farmacológica y Toxicológica de la Facultad de Ciencias Químicas y Farmacéuticas, Casilla 233, Universidad de Chile, Olivos 1007, Independencia, Santiago, Chile, and Centro para la Investigación Interdisciplinaria Avanzada en Ciencia de los Materiales, Av. Blanco Encalada 2008, Santiago, Chile.

    ,
    Ivonne Olmedo

    Departamento de Química Farmacológica y Toxicológica de la Facultad de Ciencias Químicas y Farmacéuticas, Casilla 233, Universidad de Chile, Olivos 1007, Independencia, Santiago, Chile, and Centro para la Investigación Interdisciplinaria Avanzada en Ciencia de los Materiales, Av. Blanco Encalada 2008, Santiago, Chile.

    ,
    Leticia Hosta

    Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, Josep Samitier 1–5, 08028 Barcelona, Spain.

    ,
    Ariel R Guerrero

    Departamento de Química Farmacológica y Toxicológica de la Facultad de Ciencias Químicas y Farmacéuticas, Casilla 233, Universidad de Chile, Olivos 1007, Independencia, Santiago, Chile, and Centro para la Investigación Interdisciplinaria Avanzada en Ciencia de los Materiales, Av. Blanco Encalada 2008, Santiago, Chile.

    ,
    Luis Javier Cruz

    Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, Josep Samitier 1–5, 08028 Barcelona, Spain.

    &
    Fernando Albericio

    † Author for correspondence

    Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, Josep Samitier 1–5, 08028 Barcelona, Spain.

    Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1–11, 08028 Barcelona, Spain.

    Published Online:https://doi.org/10.2217/17435889.2.3.287

    In this review, we describe the contribution of peptides to the biomedical applications of metallic nanoparticles. We also discuss strategies for the preparation of peptide–nanoparticle conjugates and the synthesis of the peptides and metallic nanoparticles. An overview of the techniques used for the characterization of the conjugates is also provided. Mainly for biomedical purposes, metallic nanoparticles conjugated to peptides have been prepared from Au and iron oxide (magnetic nanoparticles). Peptides with the capacity to penetrate the plasma membrane are used to deliver nanoparticles to the cell. In addition, peptides that recognize specific cell receptors are used for targeting nanoparticles. The potential application of peptide–nanoparticle conjugates in cancer and Alzheimer’s disease therapy is discussed. Several peptide–nanoparticle conjugates show biocompatibility and present a low degree of cytotoxicity. Furthermore, several peptide–metallic nanoparticle conjugates are used for in vitro diagnosis.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Pankhurst QA, Connolly J, Jones SK et al.: Applications of magnetic NPs in biomedicine. J. Phys. D Appl. Phys.36,R167–R181 (2003).
    • Huh YM, Jun YW, Song HT et al.: In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc.127,12387–12391 (2005).
    • Loo Ch, Lowery A, Halas N et al.: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett.5(4),709–711 (2005).
    • Efremov RG, Chugunov AO, Pyrkov TV et al.: Molecular lipophilicity in protein modeling and drug design. Curr. Med. Chem.14(4),393–415 (2007).
    • Naz RK, Dabir P: Peptide vaccines against cancer, infectious diseases, and conception. Front. Biosci.12,1833–1844 (2007).
    • Cruz LJ, Iglesias E, Aguilar JC et al.: Different immune response of mice immunized with conjugates containing multiple copies of either consensus or mixotope versions of the V3 loop peptide from human immunodeficiency virus type 1. Bioconjug. Chem.15,1110–1117 (2004).
    • Daniel MC, Astruc D: AuNPs: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.104(1),293–346 (2004).• Complete review related to the synthesis and characterization of Au nanoparticles (NPs).
    • Turkevich J, Stevenson PC, Hillier J: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc.11,55–75 (1951).
    • Frens G: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.241,20–22 (1973).
    • 10  Zhang LX, Sun XP, Song YH, Jiang X, Dong SJ, Wang EA: Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: synthesis, characterization, and self-assembly. Langmuir22(6),2838–2843 (2006).
    • 11  Huang CJ, Chiu PH, Wang YH, Chen KL, Linn JJ, Yang CF: Electrochemically controlling the size of AuNPs. J. Electrochem. Soc.153(12),D193–D198 (2006).
    • 12  Goodman CM, McCusker CD, Yilmaz T, Rotello VM: Toxicity of AuNPs functionalized with cationic and anionic side chains. Bioconjug. Chem.15(4),897–900 (2004).
    • 13  Busbee BD, Obare SO, Murphy CJ: An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater.15(5),414–416 (2003).
    • 14  Doolittle JW, Dutta PK: Influence of microwave radiation on the growth of AuNPs and microporous zincophosphates in a reverse micellar system. Langmuir22(10),4825–4831 (2006).
    • 15  Shen M, Du YK, Hua NP, Yang P: Microwave irradiation synthesis and self- assembly of alkylamine-stabilized AuNPs. Powder Technol.162(1),64–72 (2006).
    • 16  Mafune F, Kohno JY, Takeda Y, Kondow T: Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control. J. Phys. Chem. B106(31),7575–7577 (2002).
    • 17  Bjerneld EJ, Svedberg F, Kall M: Laser-induced growth and deposition of noble-metal NPs for surface-enhanced Raman scattering. Nano Lett.3(5),593–596 (2003).
    • 18  Park JE, Atobe M, Fuchigami T: Synthesis of multiple shapes of AuNPs with controlled sizes in aqueous solution using ultrasound. Ultrason. Sonochem.13(3),237–241 (2006).
    • 19  Okitsu K, Ashokkumar M, Grieser F: Sonochemical synthesis of AuNPs: effects of ultrasound frequency. J. Phys. Chem. B109(44),20673–20675 (2005).
    • 20  Su CH, Wu PL, Yeh CS: Sonochemical synthesis of well-dispersed AuNPs at the ice temperature. J. Phys. Chem. B107(51),14240–14243 (2003).
    • 21  Yang YC, Wang CH, Hwu YK, Je JH: Synchrotron x-ray synthesis of colloidal gold particles for drug delivery. Mat. Chem. Phys.100(1),72–76 (2006).
    • 22  Seino S, Kinoshita T, Otome Y et al.: γ-ray synthesis of composite NPs of noble metals and magnetic iron oxides. Scripta. Mater.51(6),467–472 (2004).
    • 23  Karadas F, Ertas G, Ozkaraoglu E, Suzer S: X-ray-induced production of AuNPs on a SiO2/Si System and in a poly(methyl methacrylate) matrix. Langmuir21(1),437–442 (2005).
    • 24  Gachard E, Remita E, Khatouri J, Keita B, Nadjo L, Belloni J: Radiation-induced and chemical formation of gold clusters. N. J. Chem.22(11),1257–1265 (1998).
    • 25  Kabashin AV, Meunier M: Laser ablation-based synthesis of functionalized colloidal nanomaterials in biocompatible solutions. J. Photochem. Photobiol. A182(3),330–334 (2006).
    • 26  Andreescu D, Sau TK, Goia DV: Stabilizer-free nanosize gold sols. J. Colloid Interface Sci.298(2),742–751 (2006).
    • 27  Gupta AK, Gupta M: Synthesis and surface engineering of iron oxide NPs for biomedical applications. Biomaterials26(18),3995–4021 (2005).• Complete review related to the synthesis and characterization of iron oxide (IO)NPs.
    • 28  Reimers GW, Khalafalla SE: Preparing magneticfluids by a peptizing method. US Bureau Mines Tech. Rep.59 (1972)
    • 29  Hadjipanayis GC, Siegel RW: Nanophase materials: synthesis, properties and applications. NATO ASI series Appl. Sci.E260, Kluwer, Dordrecht, The Netherlands (1993).
    • 30  Sjogren CE, Briley-Saebo K, Hanson M, Johansson C: Magnetic characterization of iron oxides for magnetic resonance imaging. Magn. Reson. Med.31(3),268–272 (1994).
    • 31  Collier JH, Messersmith PB: Biomimetic mineralization, mesoporous structures. In: Encyclopedia of Materials: Science and Technology. Buschow KH, Buschow J, Cahn RW et al. (Eds). Elsevier Science, Amsterdam, Holland 602–606 (2001).
    • 32  Sinha A, Das SK, Rao V, Ramachandrarao P: Synthesis of organized inorganic crystal assemblies. Curr. Sci.79(5),646–648 (2000).
    • 33  Rosensweig RE: Ferrohydrodynamics. Rosensweig RE (Ed.). Dover Publications INC Cambridge University Press, New York, NY, USA (1985).
    • 34  Tillotson TM, Gash AE, Simpson RL, Hrubesh LW, Satcher JH: Nanostructured energetic materials using sol–gel methodologies. J. Noncryst. Solids285,335–358 (2001).
    • 35  Ziolo RF, Giannelis EP, Weinstein BA et al.: Matrix mediated synthesis of γ-Fe2O3: a new optically transparent magnetic material. Science257,219–223 (1992).
    • 36  Deng Y, Wang L, Yang W, Fu S, Elaiessari A: Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J. Magn. Magn. Mater.257(1),69–78 (2003).
    • 37  Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W: Synthesis and characterization of silica-coated iron oxide NPs in microemulsion: the effect of non-ionic surfactants. Langmuir17,2900–2906 (2001).
    • 38  Li S, Irwin G, Simmons B, John V, McPherson G, Bose A: Structured materials synthesis in a self-assembled surfactant mesophase. Colloids Surf. A174,275 (2000).
    • 39  Lloyd-Williams P, Albericio F, Giralt E: Chemical Approaches to the Synthesis of Peptides and Proteins. Albericio F (Ed.). CRC, Boca Raton, FL, USA (1997).• Pedagogic book related to peptide synthesis.
    • 40  Merrifield Bruce R: Solid-phase synthesis (Nobel lecture). Angew. Chem.97,801–812 (1985).
    • 41  Albericio F, Chinchilla R, Dodsworth DJ et al.: New trends in peptide coupling reagents. Org. Prep. Proced. Int.33(3),203–303 (2001).
    • 42  Kaiser E, Colescott RL, Bossinger CD et al.: Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem.34(2),595–598 (1970).
    • 43  Chan WC, White PD: Fmoc Solid Phase Peptide Synthesis. Oxford University Press, Oxford, UK 303–327 (2000).
    • 44  Albericio F: Orthogonal protecting groups for Nα-amino and C-terminal carboxyl functions in solid-phase peptide synthesis. Biopolymers55,123–139 (2000).
    • 45  Selsted ME: HPLC methods for purification of antimicrobial peptides. Methods Mol. Biol.78,17–33 (1997).
    • 46  Yeganeh MS, Dougal SM, Polizzotti RS, Rabinowitz P: Interfacial atomic structure of a self-assembled alkyl thiol monolayer /Au (111): a sum-frequency generation study. Phys. Rev. Lett.74,1811–1814 (1995).
    • 47  Kogan MJ, Bastus NJ, Amigo R et al.: NP-mediated local and remote manipulation of protein aggregation. Nano Lett.6,110–115 (2006).• Interesting potential application of a conjugated peptide–AuNP for the treatment of Alzheimer’s disease.
    • 48  Levy R, Thanh TK, Doty RC et al.: Rational and combinatorial design of peptide capping ligands for AuNPs. J. Am. Chem. Soc.126,10076–10084 (2004).• One of the pioneer works related to the potential use and properties of peptides–AuNPs.
    • 49  Wang Z, Lévy R, Fernig DG, Brust M: The peptide route to multifunctional AuNPs. Bioconjug. Chem.16,497–500 (2005).
    • 50  Wang Z, Lévy R, Fernig DG, Brust M: Kinase-catalyzed modification of AuNPs: a new approach to colorimetric kinase activity screening. J. Am. Chem. Soc.128,2214–2215 (2006).
    • 51  De la Fuente JM, Berry CC, Riehle MO, Curtis SG: NPs targeting at cells. Langmuir22,3286–3293 (2006).
    • 52  Josephson L, Tung CH, Moore A, Weissleder R: High-efficiency intracellular magnetic labelling with novel superparamagnetic–Tat peptide conjugates. Bioconjug. Chem.10,186–191 (1999).
    • 53  Lewin M, Carlesso N, Tung CH et al.: Tat peptide-derivatized magnetic NPs allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol.18,410–414 (2000).
    • 54  Bhadriraju K, Hansen LK: Hepatocyte adhesion, growth and differentiated function on RGD-containing proteins. Biomaterials21(3),267–272 (2000).
    • 55  Meriaudeau F, Downey T, Wig A et al.: Fiber optic sensor based on gold island plasmon resonance. Sens. Actuators B54(1),106–117 (1999).
    • 56  Mie G: Contributions to the optics of turbid media, especially colloidal metal solutions. Ann. Physik.25,377 (1908).
    • 57  Kreibig U, Genzel L: Optical absorption of small metallic nanoparticles. Surf. Sci.156,678 (1985).
    • 58  Creighton JA, Eadon DG: Ultraviolet-visible absorption spectra of the colloidal metallic elements. Faraday Trans. J. Chem. Soc.87,3881 (1991).
    • 59  Link S, El-Sayed M: Spectral propierties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B103(40),8410–8426 (1999).
    • 60  Link S, Mohamed MB, El-Sayed M: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B103,3073–3077 (1999).
    • 61  Shipway AN, Lahav M, Gabai R et al.: Investigations into the electrostatically induced aggregation of gold nanoparticles. Langmuir16(23),8789–8795 (2000).
    • 62  Mandal TK, Si S: pH-controlled reversible assembly of peptide-functionalized gold nanoparticles. Langmuir23,190–195 (2007).
    • 63  De la Fuente JM, Berry CC: Tat peptide as an efficient molecule to translocate AuNPs into the cell nucleus. Bioconjug. Chem.16,1176–1180 (2005).• Nice example of how a peptide could contribute to the translocation of AuNPs.
    • 64  Tkachenko AG, Xie H, Liu Y et al.: Cellular trajectories of peptide-modified gold NP complexes: comparison of nuclear localization signals and peptide transduction domain. Bioconjug. Chem.15,482–490 (2004).
    • 65  Tkachenko AG, Xie H, Coleman D et al.: Multifunctional gold nanoparticles–peptide complexes for nuclear targeting. J. Am. Chem. Soc.125,4700–47701 (2003).
    • 66  Baudhuin P, Beauvois S, Courtoy PJ: Colloidal Gold: Principles, Methods, and Applications. Hayat MA (Ed.). Academic Press, New York, NY, USA (1989).
    • 67  Fabris L, Antonello S, Armelao L et al.: Gold nanoclusters protected by conformationally constrained peptides. J. Am. Chem. Soc.128,326–336 (2006).
    • 68  Hostetler MJ, Wingate JE, Zhong CJ et al.: Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir14,17–30 (1998).
    • 69  Bourg MC, Badia A, Lennox RB: Gold sulfur bonding in 2D and 3D self-assembled monolayers: XPS characterization. J. Phys. Chem.104,6562–6567 (2000).
    • 70  Jain PK, Lee KS, El-Sayed IH et al.: Calculated absorption and scattering properties of AuNPs of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B110(14),7238–7248 (2006).
    • 71  Slocik JM, Stone MO, Naik RR: Synthesis of gold nanoparticles using multifunctional peptides. Small1(11),1048–1052 (2005).
    • 72  Lévy R, Wang Z, Duchesne L et al.: A generic approach to monofunctionalized protein-like AuNPs based on immobilized metal ion affinity chromatography. Chembiochem7,592–594 (2006).
    • 73  Guarise C, Pasquato L, De Filippis V, Scrimin P: AuNPs-based proteasa assay. Proc. Natl Acad. Sci. USA103,3978–3982 (2006).
    • 74  Mo X, An Y, Yun Ch-S, Yu MS: Nanoparticle-assisted visualization of binding interactions between collagen mimetic peptide and collagen fibers. Angew. Chem. Int. Ed.45,2267–2270 (2005).
    • 75  Shaw LM, Olsen BR: FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem. Sci.16,191 (1991).
    • 76  Berry CC, Curtis SG: Functionalisation of magnetic NPs for application in biomedicine. J. Phys. D Appl. Phys.36,R198–R206 (2003).
    • 77  Hernando A, Crespo P, García MA: Metallic magnetic NPs. Scientific Worldjournal5,972–1001 (2005).
    • 78  Zhao M, Kircher MF, Josephson L, Weissleder R: Differential conjugation of Tat peptide to superparamagnetic NPs and its effect on cellular uptake. Bioconjug. Chem.13,840–844 (2002).
    • 79  Garden OA, Reynolds PR, Yates J et al.: A rapid method for labelling CD4+ T cells with ultrasmall paramagnetic iron oxide NPs for magnetic resonance imaging that preserves proliferative, regulatory and migratory behaviour in vitro. J. Inmunol. Methods314,123–133 (2006).
    • 80  Dodd CH, Hsu HC, Chu WJ et al.: Normal T cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic NPs. J. Immunol. Methods256,89–105 (2001).
    • 81  Lee SJ, Jeong JR, Shin SC et al.: Intracellular translocation of superparamagnetic iron oxide NPs encapsulated with peptide-conjugated poly(D,L lactide-co-glycolide). J. Appl. Phys.97,10Q913–1 (2005).
    • 82  Wadghiri YZ, Sigurdsson EM, Sadowski M et al.: Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med.50,293–302 (2003).
    • 83  Thanh TK, Puntes VF, Tung LD, Fernig DG: Peptides as capping ligands for in situ synthesis of water solubles Co NPs for bioapplications. J. Phys. Conf. Series17,70–76 (2005).
    • 84  Naik RR, Jones SE, Murray CJ et al.: Peptide templates for NP synthesis derived from polymerase chain reaction-driven phage display. Adv. Funct. Mater.1,25–30 (2004).