We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Potential of adiponectin as a cardioprotective agent

    Rei Shibata

    † Author for correspondence

    Nagoya University Graduate School of Medicine, Department of Cardiology, 65 Tsurumai, Showa, Nagoya, 466–8550, Japan.

    ,
    Noriyuki Ouchi

    Boston University School of Medicine, Molecular Cardiology/Whitaker Cardiovascular Institute, 715 Albany Street, W611, Boston, MA 02118, USA.

    ,
    Kenneth Walsh

    Boston University School of Medicine, Molecular Cardiology/Whitaker Cardiovascular Institute, 715 Albany Street, W611, Boston, MA 02118, USA.

    &
    Toyoaki Murohara

    Nagoya University Graduate School of Medicine, Department of Cardiology, 65 Tsurumai, Showa, Nagoya, 466–8550, Japan.

    Published Online:https://doi.org/10.2217/14796678.3.6.647

    In this review, we focus on the role of adiponectin as a cardioprotective agent in several pathological heart conditions. Obesity is closely associated with Type 2 diabetes, hypertension and heart disease. Adiponectin is an adipose tissue-derived hormone whose concentration is downregulated in subjects with obesity-related diseases. Hypoadiponectinemia has been identified as an independent risk factor for Type 2 diabetes, coronary artery disease, acute coronary syndrome and hypertension. More recent experimental findings have shown that adiponectin directly affects signaling in cardiac myocytes and has beneficial effects on several pathological heart conditions, including cardiac hypertrophy and myocardial infarction. The favorable effects of adiponectin are associated with attenuated inflammatory response, decreased myocyte death, decreased hypertrophic response, maintained ischemia-induced angiogenesis and reduced interstitial fibrosis. Therefore, adiponectin could represent a molecular target for treating obesity-linked cardiac diseases.

    Bibliography

    • Friedman JM: A war on obesity, not the obese. Science299(5608),856–858 (2003).
    • Reilly MP, Rader DJ: The metabolic syndrome: more than the sum of its parts? Circulation108(13),1546–1551 (2003).
    • Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, Walsh K: Obesity, adiponectin and vascular inflammatory disease. Curr. Opin. Lipidol.14(6),561–566 (2003).
    • Berg AH, Scherer PE: Adipose tissue, inflammation, and cardiovascular disease. Circ. Res.96(9),939–949 (2005).
    • Yang Q, Graham TE, Mody N et al.: Serum retinol binding protein 4 contributes to insulin resistance in obesity and Type 2 diabetes. Nature436(7049),356–362 (2005).
    • Kanda H, Tateya S, Tamori Y et al.: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest.116(6),1494–1505 (2006).
    • Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K: cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1). Biochem. Biophys. Res. Commun.221(2),286–289 (1996).
    • Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF: A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem.270(45),26746–26749 (1995).
    • Hu E, Liang P, Spiegelman BM: AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem.271(18),10697–10703 (1996).
    • 10  Nakano Y, Tobe T, Choi-Miura NH, Mazda T, Tomita M: Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. (Tokyo)120(4),803–812 (1996).
    • 11  Arita Y, Kihara S, Ouchi N et al.: Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun.257(1),79–83 (1999).
    • 12  Pajvani UB, Du X, Combs TP et al.: Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem.278(11),9073–9085 (2003).
    • 13  Kishida K, Nagaretani H, Kondo H et al.: Disturbed secretion of mutant adiponectin associated with the metabolic syndrome. Biochem. Biophys. Res. Commun.306(1),286–292 (2003).
    • 14  Fruebis J, Tsao TS, Javorschi S et al.: Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA98(4),2005–2010 (2001).
    • 15  Hotta K, Funahashi T, Bodkin NL et al.: Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to Type 2 diabetes in rhesus monkeys. Diabetes50(5),1126–1133 (2001).
    • 16  Ryo M, Nakamura T, Kihara S et al.: Adiponectin as a biomarker of the metabolic syndrome. Circ. J.68(11),975–981 (2004).
    • 17  Cnop M, Havel PJ, Utzschneider KM et al.: Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia46(4),459–469 (2003).
    • 18  Hotta K, Funahashi T, Arita Y et al.: Plasma concentrations of a novel, adipose-specific protein, adiponectin, in Type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol.20(6),1595–1599 (2000).
    • 19  Lindsay RS, Funahashi T, Hanson RL et al.: Adiponectin and development of Type 2 diabetes in the Pima Indian population. Lancet360(9326),7–8 (2002).
    • 20  Spranger J, Kroke A, Mohlig M et al.: Adiponectin and protection against Type 2 diabetes mellitus. Lancet361(9353),226–228 (2003).
    • 21  Snehalatha C, Mukesh B, Simon M, Viswanathan V, Haffner SM, Ramachandran A: Plasma adiponectin is an independent predictor of Type 2 diabetes in Asian Indians. Diabetes Care26(12),3226–3229 (2003).
    • 22  Choi KM, Lee J, Lee KW et al.: Serum adiponectin concentrations predict the developments of Type 2 diabetes and the metabolic syndrome in elderly Koreans. Clin. Endocrinol. (Oxf.)61(1),75–80 (2004).
    • 23  Yamamoto Y, Hirose H, Saito I, Nishikai K, Saruta T: Adiponectin, an adipocyte-derived protein, predicts future insulin resistance: two-year follow-up study in Japanese population. J. Clin. Endocrinol. Metab.89(1),87–90 (2004).
    • 24  Ouchi N, Kihara S, Arita Y et al.: Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation100(25),2473–2476 (1999).
    • 25  Kumada M, Kihara S, Sumitsuji S et al.: Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler. Thromb. Vasc. Biol.23(1),85–89 (2003).
    • 26  Iwashima Y, Katsuya T, Ishikawa K et al.: Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension43(6),1318–1323 (2004).
    • 27  Nakamura Y, Shimada K, Fukuda D et al.: Implications of plasma concentrations of adiponectin in patients with coronary artery disease. Heart90(5),528–533 (2004).
    • 28  Kojima S, Funahashi T, Sakamoto T et al.: The variation of plasma concentrations of a novel, adipocyte derived protein, adiponectin, in patients with acute myocardial infarction. Heart89(6),667 (2003).
    • 29  Kojima S, Funahashi T, Otsuka F et al.: Future adverse cardiac events can be predicted by persistently low plasma adiponectin concentrations in men and marked reductions of adiponectin in women after acute myocardial infarction. Atherosclerosis (2006) (Epub ahead of print).
    • 30  Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB: Plasma adiponectin levels and risk of myocardial infarction in men. JAMA291(14),1730–1737 (2004).
    • 31  Schulze MB, Shai I, Rimm EB, Li T, Rifai N, Hu FB: Adiponectin and future coronary heart disease events among men with Type 2 diabetes. Diabetes54(2),534–539 (2005).
    • 32  Zoccali C, Mallamaci F, Tripepi G et al.: Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J. Am. Soc. Nephrol.13(1),134–141 (2002).
    • 33  Lindsay RS, Resnick HE, Zhu J et al.: Adiponectin and coronary heart disease: the Strong Heart Study. Arterioscler. Thromb. Vasc. Biol.25(3),e15–e16 (2005).
    • 34  Lawlor DA, Davey Smith G, Ebrahim S, Thompson C, Sattar N: Plasma adiponectin levels are associated with insulin resistance, but do not predict future risk of coronary heart disease in women. J. Clin. Endocrinol. Metab.90(10),5677–5683 (2005).
    • 35  Sattar N, Wannamethee G, Sarwar N et al.: Adiponectin and coronary heart disease: a prospective study and meta-analysis. Circulation114(7),623–629 (2006).
    • 36  Furuhashi M, Ura N, Moniwa N et al.: Possible impairment of transcardiac utilization of adiponectin in patients with Type 2 diabetes. Diabetes Care27(9),2217–2221 (2004).
    • 37  Takano H, Kodama Y, Kitta Y et al.: Transcardiac adiponectin gradient is independently related to endothelial vasomotor function in large and resistance coronary arteries in humans. Am. J. Physiol. Heart Circ. Physiol.291(6),H2641–H2646 (2006).
    • 38  Hong SJ, Park CG, Seo HS, Oh DJ, Ro YM: Associations among plasma adiponectin, hypertension, left ventricular diastolic function and left ventricular mass index. Blood Press.13(4),236–242 (2004).
    • 39  Mitsuhashi H, Yatsuya H, Tamakoshi K et al.: Adiponectin level and left ventricular hypertrophy in Japanese men. Hypertension49(6),1448–1454 (2007).
    • 40  Kistorp C, Faber J, Galatius S et al.: Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation112(12),1756–1762 (2005).
    • 41  George J, Patal S, Wexler D et al.: Circulating adiponectin concentrations in patients with congestive heart failure. Heart92(10),1420–1424 (2006).
    • 42  Tsutamoto T, Tanaka T, Sakai H et al.: Total and high molecular weight adiponectin, haemodynamics, and mortality in patients with chronic heart failure. Eur. Heart J.28(14),1723–1730 (2007).
    • 43  Anker SD, Rauchhaus M: Insights into the pathogenesis of chronic heart failure: immune activation and cachexia. Curr. Opin. Cardiol.14(3),211–216 (1999).
    • 44  Mosterd A, Cost B, Hoes AW et al.: The prognosis of heart failure in the general population: the Rotterdam Study. Eur. Heart J.22(15),1318–1327 (2001).
    • 45  Ingelsson E, Riserus U, Berne C et al.: Adiponectin and risk of congestive heart failure. JAMA295(15),1772–1774 (2006).
    • 46  Okamoto Y, Kihara S, Ouchi N et al.: Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation106(22),2767–2770 (2002).
    • 47  Kobashi C, Urakaze M, Kishida M et al.: Adiponectin inhibits endothelial synthesis of interleukin-8. Circ. Res.97(12),1245–1252 (2005).
    • 48  Ouchi N, Kihara S, Arita Y et al.: Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation102(11),1296–1301 (2000).
    • 49  Ouchi N, Kihara S, Arita Y et al.: Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation103(8),1057–1063 (2001).
    • 50  Yokota T, Oritani K, Takahashi I et al.: Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood96(5),1723–1732 (2000).
    • 51  Kumada M, Kihara S, Ouchi N et al.: Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation109(17),2046–2049 (2004).
    • 52  Kubota N, Terauchi Y, Yamauchi T et al.: Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem.277(29),25863–25866 (2002).
    • 53  Matsuda M, Shimomura I, Sata M et al.: Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J. Biol. Chem.277(40),37487–37491 (2002).
    • 54  Arita Y, Kihara S, Ouchi N et al.: Adipocyte-derived plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation105(24),2893–2898 (2002).
    • 55  Wang Y, Lam KS, Xu JY et al.: Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J. Biol. Chem.280(18),18341–18347 (2005).
    • 56  Chorny M, Polyak B, Alferiev IS, Walsh K, Friedman G, Levy RJ: Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB J.21(10),2510–2519 (2007).
    • 57  Shibata R, Ouchi N, Kihara S, Sato K, Funahashi T, Walsh K: Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J. Biol. Chem.279(27),28670–28674 (2004).
    • 58  Ouchi N, Kobayashi H, Kihara S et al.: Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem.279(2),1304–1309 (2004).
    • 59  Brakenhielm E, Veitonmaki N, Cao R et al.: Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc. Natl Acad. Sci. USA101(8),2476–2481 (2004).
    • 60  Sata M, Nishimatsu H, Osuga J et al.: Statins augment collateral growth in response to ischemia but they do not promote cancer and atherosclerosis. Hypertension43(6),1214–1220 (2004).
    • 61  Kobayashi H, Ouchi N, Kihara S et al.: Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ. Res.94(4),e27–e31 (2004).
    • 62  Xi W, Satoh H, Kase H, Suzuki K, Hattori Y: Stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to globular adiponectin-induced NO production: vasorelaxation in response to globular adiponectin. Biochem. Biophys. Res. Commun.332(1),200–205 (2005).
    • 63  Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ: Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J. Biol. Chem.278(45),45021–45026 (2003).
    • 64  Hattori Y, Suzuki M, Hattori S, Kasai K: Globular adiponectin upregulates nitric oxide production in vascular endothelial cells. Diabetologia46(11),1543–1549 (2003).
    • 65  Motoshima H, Wu X, Mahadev K, Goldstein BJ: Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem. Biophys. Res. Commun.315(2),264–271 (2004).
    • 66  Ouchi N, Ohishi M, Kihara S et al.: Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension42(3),231–234 (2003).
    • 67  Ohashi K, Kihara S, Ouchi N et al.: Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension47(6),1108–1116 (2006).
    • 68  Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD: Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J. Clin. Invest.97(11),2601–2610 (1996).
    • 69  Al Suwaidi J, Higano ST, Holmes DR Jr, Lennon R, Lerman A: Obesity is independently associated with coronary endothelial dysfunction in patients with normal or mildly diseased coronary arteries. J. Am. Coll. Cardiol.37(6),1523–1528 (2001).
    • 70  Ilercil A, Devereux RB, Roman MJ et al.: Relationship of impaired glucose tolerance to left ventricular structure and function: the Strong Heart Study. Am. Heart J.141(6),992–998 (2001).
    • 71  Rutter MK, Parise H, Benjamin EJ et al.: Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation107(3),448–454 (2003).
    • 72  Shibata R, Ouchi N, Ito M et al.: Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat. Med.10(12),1384–1389 (2004).
    • 73  Liao Y, Takashima S, Maeda N et al.: Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism. Cardiovasc. Res.67(4),705–713 (2005).
    • 74  Fujioka D, Kawabata KI, Saito Y et al.: Role of adiponectin receptors in endothelin-induced cellular hypertrophy in cultured cardiomyocytes and their expression in infarcted heart. Am. J. Physiol. Heart Circ. Physiol.290(6),H2409–H2416 (2006).
    • 75  Chan AY, Soltys CL, Young ME, Proud CG, Dyck JR: Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J. Biol. Chem.279(31),32771–32779 (2004).
    • 76  Pineiro R, Iglesias MJ, Gallego R et al.: Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett.579(23),5163–5169 (2005).
    • 77  Palanivel R, Fang X, Park M et al.: Globular and full-length forms of adiponectin mediate specific changes in glucose and fatty acid uptake and metabolism in cardiomyocytes. Cardiovasc. Res.75(1),148–157 (2007).
    • 78  Hattori Y, Hattori S, Akimoto K et al.: Globular adiponectin activates nuclear factor-κB and activating protein-1 and enhances angiotensin II-induced proliferation in cardiac fibroblasts. Diabetes56(3),804–808 (2007).
    • 79  Orlander PR, Goff DC, Morrissey M et al.: The relation of diabetes to the severity of acute myocardial infarction and post-myocardial infarction survival in Mexican–Americans and non-Hispanic Whites. The Corpus Christi Heart Project. Diabetes43(7),897–902 (1994).
    • 80  Wolk R, Berger P, Lennon RJ, Brilakis ES, Somers VK: Body mass index: a risk factor for unstable angina and myocardial infarction in patients with angiographically confirmed coronary artery disease. Circulation108(18),2206–2211 (2003).
    • 81  Shibata R, Sato K, Pimentel DR et al.: Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat. Med.11(10),1096–1103 (2005).
    • 82  Tao L, Gao E, Jiao X et al.: Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation115(11),1408–1416 (2007).
    • 83  Shibata R, Sato K, Kumada M et al.: Adiponectin accumulates in myocardial tissue that has been damaged by ischemia-reperfusion injury via leakage from the vascular compartment. Cardiovasc. Res.74(3),471–479 (2007).
    • 84  Li J, Miller EJ, Ninomiya-Tsuji J, Russell RR 3rd, Young LH: AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart. Circ. Res.97(9),872–879 (2005).
    • 85  Russell RR 3rd, Li J, Coven DL et al.: AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J. Clin. Invest.114(4),495–503 (2004).
    • 86  Terai K, Hiramoto Y, Masaki M et al.: AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol. Cell. Biol.25(21),9554–9575 (2005).
    • 87  Bolli R, Shinmura K, Tang XL et al.: Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc. Res.55(3),506–519 (2002).
    • 88  Camitta MG, Gabel SA, Chulada P et al.: Cyclooxygenase-1 and -2 knockout mice demonstrate increased cardiac ischemia/reperfusion injury but are protected by acute preconditioning. Circulation104(20),2453–2458 (2001).
    • 89  Xiao CY, Yuhki K, Hara A et al.: Prostaglandin E2 protects the heart from ischemia-reperfusion injury via its receptor subtype EP4. Circulation109(20),2462–2468 (2004).
    • 90  Hohlfeld T, Meyer-Kirchrath J, Vogel YC, Schror K: Reduction of infarct size by selective stimulation of prostaglandin EP(3) receptors in the reperfused ischemic pig heart. J. Mol. Cell. Cardiol.32(2),285–296 (2000).
    • 91  Bresalier RS, Sandler RS, Quan H et al.: Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med.352(11),1092–1102 (2005).
    • 92  Solomon SD, McMurray JJ, Pfeffer MA et al.: Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med.352,1071–1080 (2005).
    • 93  Takahashi T, Saegusa S, Sumino H et al.: Adiponectin replacement therapy attenuates myocardial damage in leptin-deficient mice with viral myocarditis. J. Int. Med. Res.33(2),207–214 (2005).
    • 94  Shibata R, Izumiya Y, Sato K et al.: Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J. Mol. Cell. Cardiol.42(6),1065–1074 (2007).
    • 95  Yamauchi T, Kamon J, Ito Y et al.: Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature423(6941),762–769 (2003).
    • 96  Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF: T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl Acad. Sci. USA101(28),10308–10313 (2004).
    • 97  Takemura Y, Ouchi N, Shibata R et al.: Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J. Clin. Invest.117(2),375–386 (2007).
    • 98  Kudrjashova E, Bashtrikov P, Bochkov V et al.: Expression of adhesion molecule T-cadherin is increased during neointima formation in experimental restenosis. Histochem. Cell Biol.118(4),281–290 (2002).
    • 99  Lord E, Ledoux S, Murphy BD, Beaudry D, Palin MF: Expression of adiponectin and its receptors in swine. J. Anim. Sci.83(3),565–578 (2005).
    • 100  Takahashi T, Saegusa S, Sumino H et al.: Adiponectin, T-cadherin and tumour necrosis factor-α in damaged cardiomyocytes from autopsy specimens. J. Int. Med. Res.33(2),236–244 (2005).
    • 101  Michalak M, Guo L, Robertson M, Lozak M, Opas M: Calreticulin in the heart. Mol. Cell. Biochem.263(1–2),137–142 (2004).
    • 102  Ding G, Qin Q, He N et al.: Adiponectin and its receptors are expressed in adult ventricular cardiomyocytes and upregulated by activation of peroxisome proliferator-activated receptor γ. J. Mol. Cell. Cardiol.43(1),73–84 (2007).
    • 103  Yoda-Murakami M, Taniguchi M, Takahashi K et al.: Change in expression of GBP28/adiponectin in carbon tetrachloride-administrated mouse liver. Biochem. Biophys. Res. Commun.285(2),372–377 (2001).
    • 104  Delaigle AM, Senou M, Guiot Y, Many MC, Brichard SM: Induction of adiponectin in skeletal muscle of Type 2 diabetic mice: in vivo and in vitro studies. Diabetologia49(6),1311–1323 (2006).
    • 105  Takahashi T, Zhu SJ, Sumino H et al.: Inhibition of cyclooxygenase-2 enhances myocardial damage in a mouse model of viral myocarditis. Life Sci.78(2),195–204 (2005).
    • 106  Takahashi T, Yu F, Saegusa S et al.: Impaired expression of cardiac adiponectin in leptin-deficient mice with viral myocarditis. Int. Heart J.47(1),107–123 (2006).
    • 107  Wittchen F, Suckau L, Witt H et al.: Genomic expression profiling of human inflammatory cardiomyopathy (DCMi) suggests novel therapeutic targets. J. Mol. Med.85(3),253–267 (2007).