We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Genetic underpinnings of tardive dyskinesia: passing the baton to pharmacogenetics

    BK Thelma

    † Author for correspondence

    Department of Genetics, University of Delhi, South Campus, New Delhi 110021, India.

    ,
    Vibhuti Srivastava

    Department of Genetics, University of Delhi, South Campus, New Delhi 110021, India.

    &
    Arun Kumar Tiwari

    Department of Genetics, University of Delhi, South Campus, New Delhi 110021, India.

    Neurogenetics section, Centre for Addiction and Mental Health, 250 College street, Toronto, Ontario, M5T1R8 Canada

    Manifestation of tardive dyskinesia (TD) among schizophrenia subjects on long-term antipsychotic treatment with typical drugs has been a clinical concern. Despite its association with extrapyramidal symptoms, typical drugs are still routinely prescribed globally though marginally superior atypical drugs have long been available. The genetic component in the etiology of TD is well documented. Search for these determinants has led to a few consensus associations of CYP2D6 *10, CYP1A2*1F, DRD2 Taq1A (rs1800497), DRD3 Ser9Gly (rs6280) and MnSOD Ala9Val (rs4880) variants with TD. However, translation of these observations into the clinic has not been achieved so far. This review discusses the salient features of TD etiopathology, current status of TD genetics, interactions between genetic and nongenetic factors, some major drawbacks, challenges and expected focus in TD research over the next decade, with emphasis on pharmacogenetics.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Casey DE: Tardive dyskinesia. West J. Med.153(5),535–541 (1990).
    • Leucht S, Pitschel-Walz G, Abraham D, Kissling W: Efficacy and extrapyramidal side-effects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared to conventional antipsychotics and placebo. A meta-analysis of randomized controlled trials. Schizophr. Res.35(1),51–68 (1999).
    • Geddes J, Freemantle N, Harrison P, Bebbington P: Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ321(7273),1371–1376 (2000).
    • Davis JM, Chen N, Glick ID: A meta-analysis of the efficacy of second-generation antipsychotics. Arch. Gen. Psychiatry60(6),553–564 (2003).
    • Lieberman JA, Stroup TS, McEvoy JP et al.: Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N. Engl. J. Med.353(12),1209–1223 (2005).
    • Jones PB, Barnes TR, Davies L et al.: Randomized controlled trial of the effect on quality of life of second- vs first-generation antipsychotic drugs in schizophrenia: Cost Utility of the Latest Antipsychotic Drugs in Schizophrenia Study (CUtLASS 1). Arch. Gen. Psychiatry63(10),1079–1087 (2006).
    • Rosenheck RA, Leslie DL; CATIE Study Investigators et al.: Cost-effectiveness of second-generation antipsychotics and perphenazine in a randomized trial of treatment for chronic schizophrenia. Am. J. Psychiatry163(12),2080–2089 (2006).
    • Davies LM, Lewis S; CUtLASS team et al.: Cost-effectiveness of first- v. second-generation antipsychotic drugs: results from a randomised controlled trial in schizophrenia responding poorly to previous therapy. Br. J. Psychiatry191,14–22 (2007).
    • Hoenberg K, Taylor N, Goetz Welch J: Antipsychotics: Analysis of disease Markets and Emerging Agents. Decision Resources, Inc., MA, USA (2006).
    • 10  Krantz JC: Pharmacogenetics: heredity and response to drugs. The Quarterly Review of Biology. Kalow W (Ed.). The University of Chicago Press, IL, USA, 39(4),390 (1964).
    • 11  Dash S, Dash RJ: Spectrum of haemolytic anaemias in Punjab, North India. Trop. Geogr. Med.32(4),312–316 (1980).
    • 12  Sidrak W, Fox E, Polycarpe D et al.: Dissimilar glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in the Afars and the Somalis of Djibouti. Med. Trop. (Mars).51(2),211–214 (1991).
    • 13  Wajcman H, Galactéros F: Glucose 6-phosphate dehydrogenase deficiency: a protection against malaria and a risk for hemolytic accidents. C. R. Biol.327(8),711–720 (2004).
    • 14  Basile VS, Masellis M, Potkin SG, Kennedy JL: Pharmacogenomics in schizophrenia: the quest for individualized therapy. Hum. Mol. Genet.11,2517–2530 (2002).•• Reviews the progress in the field of tardive dyskinesia (TD) genetics.
    • 15  Bolonna AA, Arranz MJ, Mancama D, Kerwin RW: Pharmacogenomics – can genetics help in the care of psychiatric patients? Int. Rev. Psychiatry16(4),311–319 (2004).•• Reviews the progress in the field of TD genetics.
    • 16  Lerer B, Segman RH: Pharmacogenetics of antipsychotic therapy: pivotal research issues and the prospects for clinical implementation. Dialogues Clin. Neurosci.8(1),85–94 (2006).•• Reviews the progress in the field of TD genetics.
    • 17  Arranz MJ, de Leon J: Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol. Psychiatry12(8),707–747 (2007).•• Reviews the progress in the field of TD genetics.
    • 18  Maier W, Zobel A: Contribution of allelic variations to the phenotype of response to antidepressants and antipsychotics. Eur. Arch. Psychiatry Clin. Neurosci.258(Suppl. 1),12–20 (2008).•• Reviews the progress in the field of TD genetics.
    • 19  Tepper SJ, Haas JF: Prevelance of tardive dyskinesia. J. Clin. Psychiatry40,508–516 (1979).
    • 20  Geralch J, Casey DE: Tardive dyskinesia. Acta Psychiatr. Scand.77,369–378 (1988).
    • 21  Yassa R, Jeste DV: Gender differences in tardive dyskinesia: a critical review of the literature. Schizophr. Bull.18(4),701–715 (1992).
    • 22  Glazer WM, Morgenstern H, Doucette JT: Predicting the long-term risk of tardive dyskinesia in outpatients maintained on neuroleptic medications. J. Clin. Psychiatry54(4),133–139 (1993).
    • 23  Morgenstern H, Glazer WM: Identifying risk factors for tardive dyskinesia among long-term outpatients maintained with neuroleptic medications. Results of the Yale Tardive Dyskinesia Study. Arch. Gen. Psychiatry50(9),723–733 (1993).
    • 24  Glazer WM, Morgenstern H, Doucette JT: Race and tardive dyskinesia among outpatients at a CMHC. Hosp. Community Psychiatry45(1),38–42 (1994).
    • 25  Holden TJ: Tardive dyskinesia in long-term hospitalised Zulu psychiatric patients. A prevalence study. S. Afr. Med. J.71(2),88–90 (1987).
    • 26  Wonodi I, Adami HM, Cassady SL, Sherr JD, Avila MT, Thaker GK: Ethnicity and the course of tardive dyskinesia in outpatients presenting to the motor disorders clinic at the Maryland psychiatric research center. J. Clin. Psychopharmacol.24(6),592–598 (2004).
    • 27  Wonodi I, Reeves G, Carmichael D et al.: Tardive dyskinesia in children treated with atypical antipsychotic medications. Mov. Disord.22(12),1777–1782 (2007).
    • 28  Tarsy D, Baldessarini RJ: Epidemiology of tardive dyskinesia: is risk declining with modern antipsychotics? Mov. Disord.21(5),589–598 (2006).
    • 29  Sigwald J, Bouttier D, Courvoisier S: Neurological complications of neuroleptic medication. Rev. Neurol. (Paris).100,553–595 (1959).
    • 30  Druckman R, Seelinger D, Thulin B: Chronic involuntary movements induced by phenothiazines. J. Nerv. Ment. Dis.135,69–76 (1962).
    • 31  Miller DD, McEvoy JP, Davis SM et al.: Clinical correlates of tardive dyskinesia in schizophrenia: baseline data from the CATIE schizophrenia trial. Schizophr. Res.80(1),33–43 (2005).
    • 32  Jeste DV, Lacro JP, Palmer B, Rockwell E, Harris MJ, Caligiuri MP: Incidence of tardive dyskinesia in early stages of low-dose treatment with typical neuroleptics in older patients. Am. J. Psychiatry156(2),309–311 (1999).
    • 33  van Os J, Walsh E, van Horn E, Tattan T, Bale R, Thompson SG: Tardive dyskinesia in psychosis: are women really more at risk? UK700 Group. Acta Psychiatr. Scand.99(4),288–293 (1999).
    • 34  Myers DE, Schooler NR, Zullo TG, Levin H: A retrospective study of the effects of edentulism on the severity rating of tardive dyskinesia. J. Prosthet. Dent.69(6),578–581 (1993).
    • 35  Osman A, Marghalani M, Turkistani IY, Al-Swaf M, Bin Sadiq B: Neuroleptic-induced tardive dyskinesia among Arab psychotic patients. East. Mediterr. Health J.13(3),625–632 (2007).
    • 36  Swartz JR, Burgoyne K, Smith M, Gadasally R, Ananth J, Ananth K: Tardive dyskinesia and ethnicity: review of the literature. Ann. Clin. Psychiatry9(1),53–59 (1997).
    • 37  Doongaji DR, Jeste DV, Jape NM et al.: Tardive dyskinesia in India: a prevalence study. J. Clin. Psychopharmacol.2(5),341–344 (1982).
    • 38  Pandurangi AK, Channabasavanna HM, Ananth J: Dyskinesia in an Indian mental hospital. Indian J. Psychiatry20,339–342 (1978).
    • 39  Datta S, Subhalaxmi TP, Jeyseelan L, Kuruvilla K: Risk factor for tardive dyskinesia. Indian J. Psychiatry36(1),22–24 (1994).
    • 40  Bhatia T, Sabeeha MR, Shriharsh V et al.: Clinical and familial correlates of tardive dyskinesia in India and Israel. J. Postgrad. Med.50(3),167–172 (2004).
    • 41  O’Callaghan E, Larkin C, Kinsella A, Waddington JL: Obstetric complications, the putative familial-sporadic distinction, and tardive dyskinesia in schizophrenia. Br. J. Psychiatry157,578–584 (1990).
    • 42  Yassa R, Ananth J: Familial tardive dyskinesia. Am. J. Psychiatry138(12),1618–1619 (1981).
    • 43  Muller DJ, Schulze TG, Knapp M et al.: Familial occurrence of tardive dyskinesia. Acta Psychiatr. Scand.104(5),375–379 (2001).
    • 44  Segman RH, Heresco-Levy U, Finkel B et al.: Association between the serotonin 2A receptor gene and tardive dyskinesia in chronic schizophrenia. Mol. Psychiatry6,225–229 (2001).
    • 45  Casey DE: Dopamine D1 (SCH 23390) and D2 (haloperidol) antagonists in drug-naive monkeys. Psychopharmacology (Berl.)107,18–22 (1992).
    • 46  Rosengarten H, Schweitzer JW, Friedhoff AJ: Possible genetic factors underlying the pathophysiology of tardive dyskinesia. Pharmacol. Biochem. Behav.49,663–667 (1994).
    • 47  Tamminga CA, Dale JM, Goodman L, Kaneda H, Kaneda N: Neuroleptic-induced vacuous chewing movements as an animal model of tardive dyskinesia: a study in three rat strains. Psychopharmacology (Berl.)102,474–478 (1990).
    • 48  Tanaka E, Hisawa S: Clinically significant pharmacokinetic drug interactions with psychoactive drugs: antidepressants and antipsychotics and the cytochrome P450 system. J. Clin. Pharm. Ther.24,7–16 (1999).
    • 49  Otani K, Aoshima T: Pharmacogenetics of classical and new antipsychotic drugs. Ther. Drug Monit.22,118–121 (2000).
    • 50  Shimada T, Yamazaki H, Mimura M, Inui Y, Gungerich FP: Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Ther.270,414–423 (1994).
    • 51  Nebert DW, Dieter MZ: The evolution of drug metabolism. Pharmacology61,124–135 (2000).
    • 52  Bradford LD, Kirlin WG: Polymorphism of CYP2D6 in Black populations: implications for psychopharmacology. Int. J. Neuropsychopharmacol.1,173–185 (1998).
    • 53  Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A: Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br. J. Clin. Pharmacol.53,111–122 (2002).
    • 54  Schelkunov EL: Adrenergic effect of chronic administration of neuroleptics. Nature214,1210–1212 (1967).
    • 55  Klawans HL, Rubovits R: An experimental model of tardive dyskinesia. J. Neural Transm.33,235–246 (1972).
    • 56  Tarsy D, Baldessarini RJ: Pharmacologically induced behavioral supersensitivity to apomorphine. Nature245,262–263 (1973).
    • 57  Christensen AV, Fjalland B, Nielsen IM: On the supersensitivity of dopamine receptors induced by neuroleptics. Psychopharmacology48,1–6 (1976).
    • 58  Clow A, Jenner P, Marsden CD: Changes in dopamine-mediated behaviour during one year’s neuroleptic administration. Eur. J. Pharmacol.57,365–375 (1979).
    • 59  Casey DE: Tardive dyskinesia-animal models. Psychopharmacol. Bull.20,376–379 (1984).
    • 60  Casey DE: Pathophysiology of antipsychotic drug-induced movement disorders. J. Clin. Psychiatry65(Suppl. 9),25–28 (2004).
    • 61  Burt DR, Creese I, Snyder SH: Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science196(4287),326–328 (1977).
    • 62  Waddington JL, Cross AJ, Gamble SJ, Bourne RC: Spontaneous orofacial dyskinesia and dopaminergic function in rats after 6 months of neuroleptic treatment. Science220,530–532 (1983).
    • 63  Wolfe ME, Monsnaim AD: Tardive dyskinesia: Biological mechanisms and clinical aspects. American Psychiatric Press, Washington DC, USA (1988).
    • 64  Waldmeier PC, Delini-Stula AA: Serotonin – dopamine interactions in the nigrostriatal system. Eur. J. Pharmacol.55,363–373 (1979).
    • 65  Balsara JJ, Jadhav JH, Chandorkar AG: Effect of drugs influencing central serotonergic mechanisms on haloperidol-induced catalepsy. Psychopharmacology (Berl.)62,67–69 (1979).
    • 66  Kinon BJ, Lieberman JA: Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology (Berl.)124,2–34 (1996).
    • 67  Kulikov AV, Kozlachkova EY, Popova NK: Activity of tryptophan hydroxylase in brain of hereditary predisposed to catalepsy rats. Pharmacol. Biochem. Behav.43,999–1003 (1992).
    • 68  Kulikov AV, Avgustinovich DF, Kolpakov VG, Maslova GB, Popova NK: 5-HT2A serotonin receptors in the brain of rats and mice hereditarily predisposed to catalepsy. Pharmacol. Biochem. Behav.50,383–387 (1995).
    • 69  Kulikov AV, Kozlachkova EY, Kudryavtseva NN, Popova NK: Correlation between tryptophan hydroxylase activity in the brain and predisposition to pinch-induced catalepsy in mice. Pharmacol. Biochem. Behav.50,431–435 (1995).
    • 70  Popova NK, Kulikov AV, Kolpakov VG, Barykina NN, Alekhina TA: Changes in the serotonin system of the brains of rats genetically predisposed to catalepsy. Zh. Vyssh. Nerv. Deiat. Im. I P Pavlova35,742–746 (1985).
    • 71  Kulikov AV, Kolpakov VG, Maslova GB, Kozintsev I, Popova NK: Effect of selective 5-HT1A agonists and 5-HT2 antagonists on inherited catalepsy in rats. Psychopharmacology (Berl.)114,172–174 (1994).
    • 72  Fibiger HC, Lloyd KG: Neurobiological substrates of tardive dyskinesia: the GABA hypothesis. Trends Neurosci.7,462–464 (1984).
    • 73  Gunne LM, Bachus SE, Gale K: Oral movements induced by interference with nigral GABA neurotransmission: relationship to tardive dyskinesias. Exp. Neurol.100(3),459–469 (1988).
    • 74  Thaker GK, Tamminga CA, Alphs LA, Lafferman J, Ferraro TN, Hare TA: Brain γ-aminobutyric acid abnormality in tardive dyskinesia. Arch. Gen. Psychiatry44,522–529 (1987).
    • 75  Andreassen OA, Jorgensen HA: Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats. Implications for tardive dyskinesia? Prog. Neurobiol.61(5),525–541 (2000).
    • 76  McGeer EG, McGeer PL: Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids. Nature263,517–519 (1976).
    • 77  Andreassen OA, Jorgensen HA: GM1 ganglioside attenuates the development of vacuous chewing movements induced by long-term haloperidol treatment of rats. Psychopharmacology (Berl.)116,517–522 (1994).
    • 78  Andreassen OA, Aamo TO, Joorgensen HA: Inhibition by memantine of the development of persistent oral dyskinesias induced by long-term haloperidol treatment of rats. Br. J. Pharmacol.9,751–757 (1996).
    • 79  Meshul CK, Stallbaumer RK, Taylor B, Janowsky A: Haloperidol-induced morphological changes in striatum are associated with glutamate synapses. Brain Res.648,181–195 (1994).
    • 80  Yamamoto BK, Davy S: Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J. Neurochem.58,1736–1742 (1992).
    • 81  Liou YJ, Wang YC, Chen JY et al.: Association analysis of polymorphisms in the N-methyl-D-aspartate (NMDA) receptor subunit 2B (GRIN2B) gene and tardive dyskinesia in schizophrenia. Psychiatry Res.153(3),271–275 (2007).
    • 82  Cadet JL, Lohr JB: Possible involvement of free radicals in neuroleptic-induced movement disorders. Evidence from treatment of tardive dyskinesia with vitamin E. Ann. NY Acad. Sci.570,176–185 (1989).
    • 83  Elkashef AM, Wyatt RJ: Tardive dyskinesia: possible involvement of free radicals and treatment with vitamin E. Schizophr. Bull.25,731–740 (1999).
    • 84  Cadet JL, Perumal AS: Chronic treatment with prolixin causes oxidative stress in rat brain. Biol. Psychiatry28,738–740 (1990).
    • 85  Benzi G, Moretti A: Age- and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system. Free Radic. Biol. Med.19,77–101 (1995).
    • 86  Butterfield DA, Castegna A, Drake J, Scapagnini G, Calabrese V: Vitamin E and neurodegenerative disorders associated with oxidative stress. Nutr. Neurosci.5,229–239 (2002).
    • 87  Phillips KA, van Bebber SL: Measuring the value of pharmacogenomics. Nat. Rev. Drug Discov.4(6),500–509 (2005).
    • 88  Remington G: Understanding antipsychotic ”atypicality“: a clinical and pharmacological moving target. J. Psychiatry Neurosci.28,275–284 (2003).
    • 89  Sanger DJ: The search for novel antipsychotics: pharmacological and molecular targets. Expert Opin. Ther. Targets8,631–641 (2004).
    • 90  Chen CH, Wei FC, Koong FJ, Hsiao KJ: Association of TaqI A polymorphism of dopamine D2 receptor gene and tardive dyskinesia in schizophrenia. Biol. Psychiatry.41(7),827–829 (1997).
    • 91  Liou YJ, Lai IC, Liao DL et al.: The human dopamine receptor D2 (DRD2) gene is associated with tardive dyskinesia in patients with schizophrenia. Schizophr. Res.86(1–3),323–325 (2006).
    • 92  Zai CC, De Luca V, Hwang RW et al.: Meta-analysis of two dopamine D2 receptor gene polymorphisms with tardive dyskinesia in schizophrenia patients. Mol. Psychiatry12(9),794–795 (2007).
    • 93  Bakker PR, van Harten PN, van Os J: Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol. Psychiatry13(5),544–556 (2008).
    • 94  Sokoloff P, Diaz J, Le Foll B et al.: The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol. Disord. Drug Targets5(1),25–43 (2006).
    • 95  Landwehrmeyer B, Mengod G, Palacios JM: Dopamine D3 receptor mRNA and binding sites in human brain. Brain Res. Mol. Brain Res.18(1–2),187–192 (1993).
    • 96  Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC: Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature347,146–151 (1990).
    • 97  Gurevich EV, Bordelon Y, Shapiro RM, Arnold SE, Gur RE, Joyce JN: Mesolimbic dopamine D3 receptors and use of antipsychotics in patients with schizophrenia. A postmortem study. Arch. Gen. Psychiatry54,225–232 (1997).
    • 98  Meador-Woodruff JH, Haroutunian V, Powchik P, Davidson M, Davis KL, Watson SJ: Dopamine receptor transcript expression in striatum and prefrontal and occipital cortex. Focal abnormalities in orbitofrontal cortex in schizophrenia. Arch. Gen. Psychiatry54,1089–1095 (1997).
    • 99  Kling-Peterson T, Ljung E, Svensson K: Effects on locomotor activity after local application of D3 preferring compounds in discrete areas of the rat brain. J. Neural Transm.102,209–220 (1995).
    • 100  Accili D, Fishburn CS, Drago J et al.: A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc. Natl Acad. Sci. USA93(5),1945–1949 (1996).
    • 101  Fink-Jensen A, Nielsen EB, Hansen L, Scheideler MA: Behavioral and neurochemical effects of the preferential dopamine D3 receptor agonist cis-8-OH-PBZI. Eur. J. Pharmacol.342(2–3),153–161 (1998).
    • 102  Lundstrom K, Turpin MP: Proposed schizophrenia-related gene polymorphism: expression of the Ser9Gly mutant human dopamine D3 receptor with the Semliki Forest virus system. Biochem. Biophys. Res. Commun.225(3),1068–1072 (1996).
    • 103  Chong SA, Tan EC, Tan CH, Mythily, Chan YH: Polymorphisms of dopamine receptors and tardive dyskinesia among Chinese patients with schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet.116,51–54 (2003).
    • 104  Murthy JN, Laev H, Karpiak S et al.: Enzymes of oxyradical metabolism after haloperidol treatment in rat. Abstr. – Soc. Neurosci.15,139 (1989).
    • 105  Rosenblum JS, Gilula NB, Lerner RA: On signal sequence polymorphisms and diseases of distribution. Proc. Natl Acad. Sci. USA93(9),4471–4473 (1996).
    • 106  Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y: Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem. Biophys. Res. Commun.226(2),561–565 (1996); Erratum in: Biochem. Biophys. Res. Commun.229(1),361 (1996).
    • 107  Hitzeroth A, Niehaus DJ, Koen L, Botes WC, Deleuze JF, Warnich L: Association between the MnSOD Ala-9Val polymorphism and development of schizophrenia and abnormal involuntary movements in the Xhosa population. Prog. Neuropsychopharmacol. Biol. Psychiatry.31(3),664–672 (2007).
    • 108  Hori H, Ohmori O, Shinkai T et al.: Manganese superoxide dismutase gene polymorphism and schizophrenia: relation to tardive dyskinesia. Neuropsychopharmacology23(2),170–177 (2000).
    • 109  Galecki P, Pietras T, Szemraj J: Manganese superoxide dismutase gene (MnSOD) polimorphism in schizophrenics with tardive dyskinesia from central Poland. Psychiatr. Pol.40(5),937–948 (2006).
    • 110  Elson JL, Turnbull DM, Howell N: Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am. J. Hum. Genet.74(2),229–238 (2004).
    • 111  Rand DM, Kann LM: Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol. Biol. Evol.13,735–748 (1996).
    • 112  Hasegawa M, Cao Y, Yang Z: Preponderance of slightly deleterious polymorphism in mitochondrial DNA: nonsynonymous/synonymous rate ratio is much higher within species than between species. Mol. Biol. Evol.15,1499–1505 (1998).
    • 113  Moilanen JS, Majamaa K: Phylogenetic network and physicochemical properties of nonsynonymous mutations in the protein-coding genes of human mitochondrial DNA. Mol. Biol. Evol.20,1195–1210 (2003).
    • 114  Moilanen JS, Finnilä S, Majamaa K: Lineage-specific selection in human mtDNA: lack of polymorphisms in a segment of MTND5 gene in haplogroup J. Mol. Biol. Evol.20,2132–2142 (2003).
    • 115  Kovoor A, Seyffarth P, Ebert J et al.: D2 dopamine receptors colocalize regulator of G-protein signaling 9-2 (RGS9-2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways. J. Neurosci.25(8),2157–2165 (2005).
    • 116  Liou YJ, Chen ML, Wang YC et al.: Analysis of genetic variations in the RGS9 gene and antipsychotic-induced tardive dyskinesia in schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. (2008) (Epub ahead of print).
    • 117  Segman RH, Heresco-Levy U, Yakir A et al.: Interactive effect of cytochrome P450 17α-hydroxylase and dopamine D3 receptor gene polymorphisms on abnormal involuntary movements in chronic schizophrenia. Biol. Psychiatry51(3),261–263 (2002).
    • 118  Zhang ZJ, Zhang XB, Hou G, Yao H, Reynolds GP: Interaction between polymorphisms of the dopamine D3 receptor and manganese superoxide dismutase genes in susceptibility to tardive dyskinesia. Psychiatr. Genet.13(3),187–192 (2003).
    • 119  Burdick KE, Kamiya A, Hodgkinson CA et al.: Elucidating the relationship between DISC1, NDEL1, and NDE1 and the risk for schizophrenia: evidence of epistasis and competitive binding. Hum. Mol. Genet.17(16),2462–2473 (2008).
    • 120  Pickard BS, Christoforou A, Thomson PA et al.: Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder. Mol. Psychiatry (2008) (Epub ahead of print).
    • 121  Hänninen K, Katila H, Saarela M et al.: Interleukin-1 β gene polymorphism and its interactions with neuregulin-1 gene polymorphism are associated with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci.258(1),10–15 (2008).
    • 122  Alfimova MV, Golimbet VE, Gritsenko IK et al.: Interaction of dopamine system genes and cognitive functions in patients with schizophrenia and their relatives and in healthy subjects from the general population. Neurosci. Behav. Physiol.37(7),643–650 (2007).
    • 123  Morris DW, Murphy K, Kenny N et al.: Dysbindin (DTNBP1) and the biogenesis of lysosome-related organelles complex 1 (BLOC-1): main and epistatic gene effects are potential contributors to schizophrenia susceptibility. Biol. Psychiatry63(1),24–31 (2008).
    • 124  Benzel I, Bansal A, Browning BL et al.: Interactions among genes in the ErbB-Neuregulin signalling network are associated with increased susceptibility to schizophrenia. Behav. Brain Funct.3,31 (2007).
    • 125  Straub RE, Lipska BK, Egan MF et al.: Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol. Psychiatry12(9),854–869 (2007).
    • 126  Lachman HM, Pedrosa E, Nolan KA, Glass M, Ye K, Saito T: Analysis of polymorphisms in AT-rich domains of neuregulin 1 gene in schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet.141B(1),102–109 (2006).
    • 127  Ikeda M, Iwata N, Kitajima T et al.: Positive association of the serotonin 5-HT7 receptor gene with schizophrenia in a Japanese population. Neuropsychopharmacology31(4),866–871 (2006).
    • 128  Gysin R, Kraftsik R, Sandell J et al.: Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proc. Natl Acad. Sci. USA104(42),16621–16626 (2007).
    • 129  Yamada K, Gerber DJ, Iwayama Y et al.: Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia. Proc. Natl Acad. Sci. USA104(8),2815–2820 (2007).
    • 130  Buckholtz JW, Meyer-Lindenberg A, Honea RA et al.: Allelic variation inRGS4 impacts functional and structural connectivity in the human brain. J. Neurosci.27(7),1584–1593 (2007).
    • 131  Talkowski ME, Kirov G, Bamne M et al.: A network of dopaminergic gene variations implicated as risk factors for schizophrenia. Hum. Mol. Genet.17(5),747–758 (2008).
    • 132  Zhang Z, Zhang X, Hou G, Sha W, Reynolds GP: The increased activity of plasma manganese superoxide dismutase in tardive dyskinesia is unrelated to the Ala-9Val polymorphism. J. Psychiatr. Res.36(5),317–324 (2002).
    • 133  Tan YL, Zhou DF, Zhang XY: Decreased plasma brain-derived neurotrophic factor levels in schizophrenic patients with tardive dyskinesia: association with dyskinetic movements. Schizophr. Res.74(2–3),263–270 (2005).
    • 134  Srivastava V, Varma PG, Prasad S et al.: Genetic susceptibility to tardive dyskinesia among schizophrenia subjects: IV. Role of dopaminergic pathway gene polymorphisms. Pharmacogenet. Genomics16(2),111–117 (2006).
    • 135  Weinshilboum RM, Raymond FA: Inheritance of low erythrocyte catechol-O-methyltransferase activity in man. Am. J. Hum. Genet.29,125–135 (1977).
    • 136  Inada T, Koga M, Ishiguro H et al.: Pathway-based association analysis of genome-wide screening data suggest that genes associated with the γ-aminobutyric acid receptor signaling pathway are involved in neuroleptic-induced, treatment-resistant tardive dyskinesia. Pharmacogenet. Genomics18(4),317–323 (2008).• Only genome-wide association performed on TD to date
    • 137  Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science273,1516–1517 (1996).
    • 138  Emahazion T, Feuk L, Jobs M et al.: SNP association studies in Alzheimer’s disease highlight problems for complex disease analysis. Trends Genet.17,407–413 (2001).
    • 139  Sanders AR, Gejman PV: Influential ideas and experimental progress in schizophrenia genetics research. JAMA285,2831–2833 (2001).
    • 140  Jablensky A: Subtyping schizophrenia: implications for genetic research. Mol. Psychiatry11,815–836 (2006).
    • 141  Marsden CD, Tarsy D, Baldessarini RJ: Spontaneous and drug induced movement disorders in psychotic patients. In: Psychiatric aspects of neurologic disease. Benson BF, Blumer D (Eds). Grune and Stratton, NY, USA, 219–265 (1975).
    • 142  Owens DGC, Johnstone EC, Frith ED: Spontaneous involuntary disorders of movement: their prevalence, severity, and distribution in chronic schizophrenics with and without treatment with neuroleptics. Arch. Gen. Psychiatry39,452–461 (1982).
    • 143  Walsh T, McClellan JM, McCarthy SE et al.: Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science320(5875),539–543 (2008).
    • 144  Yan J, Noltner K, Feng J et al.: Neurexin 1α structural variants associated with autism. Neurosci. Lett.438(3),368–370 (2008).
    • 145  Bacchelli E, Blasi F, Biondolillo M et al.: Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in the cAMP-GEFII gene. Mol. Psychiatry8(11),916–924 (2003).
    • 146  Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M: Strong association of de novo copy number mutations with sporadic schizophrenia. Nat. Genet.40,880–885 (2008).
    • 147  Sebat J, Lakshmi B, Malhotra D et al.: Strong association of de novo copy number mutations with autism. Science316(5823),445–449 (2007).
    • 148  Lander E, Kruglyak L: Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet.11241–247 (1995).
    • 149  Suraez B, Hampe CL, van Eedewlgh P: Problems replicating linkage claims in psychiatry. In: New genetic approaches to mental disorders. Gershon ES, Cloninger CR (Eds). American Psychiatry Press, Washington DC, USA (1995).
    • 150  Lowe CE, Cooper JD, Chapman JM et al.: Cost-effective analysis of candidate genes using htSNPs: a staged approach. Genes Immun.5,301–305 (2004).
    • 151  Aplenc R, Zhao H, Rebbeck TR, Propert KJ: Group sequential methods and sample size savings in biomarker-disease association studies. Genetics163,1215–1219 (2003).
    • 152  Satagopan JM, Elston RC: Optimal two-stage genotyping in population-based association studies. Genet. Epidemiol.25,149–157 (2003).
    • 153  Schooler NR, Kane JM: Research diagnoses for tardive dyskinesia. Arch. Gen. Psychiatry39(4),486–487 (1982).
    • 154  Guy W (Ed.).: Early Clinical Drug Evaluation Unit B Assessment Manual. US Department of Health and Human Services, National Institute of Mental Health (NIMH), MD, USA (1976).
    • 155  Simpson GH, Angus GSW: A rating scale for extrapyramidal side effects. Acta Psychiatr. Scand.212,11–19 (1970).
    • 156  Ennis S, Goverdhan S, Cree A, Hoh J, Collins A, Lotery A: Fine-scale linkage disequilibrium mapping of age-related macular degeneration in the complement factor H gene region. Br. J. Ophthalmol.91(7),966–970 (2007).
    • 157  Gudmundsson J, Sulem P, Manolescu A et al.: Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet.39(5),631–637 (2007).
    • 158  Libioulle C, Louis E, Hansoul S et al.: Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet.3(4),E58 (2007).
    • 159  Saxena R, Voight BF, Lyssenko V et al.: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science316(5829),1331–1336 (2007).
    • 160  Lencz T, Morgan TV, Athanasiou M et al.: Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol. Psychiatry12(6),572–580 (2007).
    • 161  Kirov G, Zaharieva I, Georgieva L et al.: A genome-wide association study in 574 schizophrenia trios using DNA pooling. Mol. Psychiatry (2008) (Epub ahead of print).
    • 162  Shifman S, Johannesson M, Bronstein M et al.: Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet.4(2),E28 (2008).
    • 163  Petronis A: The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biol. Psychiatry.55(10),965–970 (2004).
    • 164  Petronis A: Epigenetics and twins: three variations on the theme. Trends Genet.22(7),347–350 (2006).
    • 165  Costa E, Grayson DR, Guidotti A: Epigenetic downregulation of GABAergic function in schizophrenia: potential for pharmacological intervention? Mol. Interv.3(4),220–229 (2003).
    • 166  Abdolmaleky HM, Thiagalingam S, Wilcox M: Genetics and epigenetics in major psychiatric disorders: dilemmas, achievements, applications, and future scope. Am. J. Pharmacogenomics5(3),149–160 (2005).
    • 167  Winterer G, Hermann WM: Valproate and the symptomatic treatment of schizophrenia spectrum patients. Pharmacopsychiatry33(5),182–188 (2000).
    • 168  Gimelbrant A, Hutchinson JN, Thompson BR, Chess A: Widespread monoallelic expression on human autosomes. Science318(5853),1136–1140 (2007).
    • 169  Bray NJ, Buckland PR, Williams NM et al.: A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am. J. Hum. Genet.73(1),152–161 (2003).
    • 170  Zhu G, Lipsky RH, Xu K et al.: Differential expression of human COMT alleles in brain and lymphoblasts detected by RT-coupled 5’ nuclease assay. Psychopharmacology (Berl.)177(1–2),178–184 (2004).
    • 171  Tiwari AK, Deshpande SN, Rao AR et al.: Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: III. Lack of association of CYP3A4 and CYP2D6 gene polymorphisms. Schizophr. Res.75(1),21–26 (2005).
    • 172  Tiwari AK, Deshpande SN, Rao AR et al.: Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: I. Association of CYP1A2 gene polymorphism. Pharmacogenomics J.5(1),60–69 (2005).
    • 173  Thelma BK, Tiwari AK, Deshpande SN, Lerer B, Nimgaonkar VL: Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: role of oxidative stress pathway genes. Schizophr. Res.92(1–3),278–279 (2007).
    • 174  Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL: Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl Acad. Sci. USA102(44),15942–15947 (2005).
    • 175  Prugnolle F, Manica A, Balloux F: Geography predicts neutral genetic diversity of human populations. Curr. Biol.15(5),R159–R160 (2005).
    • 176  Liu H, Prugnolle F, Manica A, Balloux F: A geographically explicit genetic model of worldwide human-settlement history. Am. J. Hum. Genet.79(2),230–237 (2006).
    • 177  Balaresque PL, Ballereau SJ, Jobling MA: Challenges in human genetic diversity: demographic history and adaptation. Hum. Mol. Genet.16(Spec No. 2),R134–R139 (2007).
    • 178  Linz B, Balloux F, Moodley Y et al.: An African origin for the intimate association between humans and Helicobacter pylori.Nature445(7130),915–918 (2007).
    • 179  Prasad P, Thelma BK: Normative genetic profiles of RAAS pathway gene polymorphisms in North Indian and South Indian populations. Hum. Biol.79(2),241–254 (2007).
    • 180  Tiwari AK, Punia S, Juyal RC, Thelma BK: Genetic profiling of genes from the oxidative stress pathway among North and South Indians. Human Biology80(2),161–179 (2008).
    • 181  Gary R: Tardive dyskinesia: eliminated, forgotten, or overshadowed? Curr. Opin. Psychiatry20,131–137 (2007).
    • 182  Ascher-Svanum H, Zhu B, Faries D, Peng X, Kinon B, Tohen M: Tardive dyskinesia and the 3- year course of schizophrenia: results from a large, prospective, naturalistic study. J. Clin. Psychiatry24,E1–E9 (2008).
    • 183  Ohmori O, Suzuki T, Kojima H et al.: Tardive dyskinesia and debrisoquine 4-hydroxylase (CYP2D6) genotype in Japanese schizophrenics. Schizophr. Res.32(2),107–113 (1998).
    • 184  Kapitany T, Meszaros K, Lenzinger E et al.: Genetic polymorphisms for drug metabolism (CYP2D6) and tardive dyskinesia in schizophrenia. Schizophr. Res.32(2),101–106 (1998).
    • 185  Lam LC, Garcia-Barcelo MM, Ungvari GS et al.: Cytochrome P450 2D6 genotyping and association with tardive dyskinesia in Chinese schizophrenic patients. Pharmacopsychiatry34,238–241 (2001).
    • 186  Ellingrod VL, Schultz SK, Arndt S: Abnormal movements and tardive dyskinesia in smokers and nonsmokers with schizophrenia genotyped for cytochrome P450 2D6. Pharmacotherapy22(11),1416–1419 (2002).
    • 187  Schillevoort I, de Boer A, van der Weide J et al.: Antipsychotic-induced extrapyramidal syndromes and cytochrome P450 2D6 genotype: a case-control study. Pharmacogenetics12(3),235–240 (2002).
    • 188  Nikoloff D, Shim JC, Fairchild M et al.: Association between CYP2D6 genotype and tardive dyskinesia in Korean schizophrenics. Pharmacogenomics J.2(6),400–407 (2002).
    • 189  Inada T, Senoo H, Iijima Y, Yamauchi T, Yagi G: Cytochrome P450 II D6 gene polymorphisms and the neuroleptic-induced extrapyramidal symptoms in Japanese schizophrenic patients. Psychiatr. Genet.13(3),163–168 (2003).
    • 190  Liou YJ, Wang YC, Bai YM et al.: Cytochrome P-450 2D6*10 C188T polymorphism is associated with antipsychotic-induced persistent tardive dyskinesia in Chinese schizophrenic patients. Neuropsychobiology49(4),167–173 (2004).
    • 191  Fu Y, Fan CH, Deng HH et al.: Association of CYP2D6 and CYP1A2 gene polymorphism with tardive dyskinesia in Chinese schizophrenic patients. Acta Pharmacol. Sin.27(3),328–332 (2006).
    • 192  Basile VS, Ozdemir V, Masellis M et al.: A functional polymorphism of the cytochrome P450 1A2(CYP1A2) gene: association with tardive dyskinesia in schizophrenia. Mol. Psychiatry5,410–417 (2000).
    • 193  Hori H, Ohmori O, Shinkai T, Kojima H, Nakamura J: Association between three functional polymorphisms of dopamine D2 receptor gene and tardive dyskinesia in schizophrenia. Am. J. Med. Genet.105(8),774–778 (2001).
    • 194  Mo GH, Lai IC, Wang YC et al.: Support for an association of the C939T polymorphism in the human DRD2 gene with tardive dyskinesia in schizophrenia. Schizophr. Res.97(1–3),302–304 (2007).
    • 195  Zai CC, Hwang RW, De Luca V et al.: Association study of tardive dyskinesia and twelve DRD2 polymorphisms in schizophrenia patients. Int. J. Neuropsychopharmacol.10(5),639–651 (2007).
    • 196  Steen VM, Lovlie R, MacEwan T, McCreadie RG: Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenic patients. Mol. Psychiatry (2),139–145 (1997).
    • 197  Segman RH, Neeman T, Heresco-Levy U et al.: Genotypic association between the dopamine D3 receptor gene and tardive dyskinesia in chronic schizophrenia. Mol. Psychiatry4,247–253 (1999).
    • 198  Liao DL, Yeh YC, Chen HM, Chen H, Hong CJ, Tsai SJ: Association between the Ser9Gly polymorphism of the dopamine D3 receptor gene and tardive dyskinesia in Chinese schizophrenic patients. Neuropsychobiology44,95–98 (2001).
    • 199  Woo SI, Kim JW, Rha E et al.: Association of the Ser9Gly polymorphism in the dopamine D3 receptor gene with tardive dyskinesia in Korean schizophrenics. Psychiatry Clin. Neurosci.56(4),469–474 (2002).
    • 200  Lerer B, Segman RH, Fangerau H et al.: Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology27(1),105–119 (2002).
    • 201  de Leon J, Susce MT, Pan RM, Koch WH, Wedlund PJ: Polymorphic variations in GSTM1, GSTT1, PgP, CYP2D6, CYP3A5, and dopamine D2 and D3 receptors and their association with tardive dyskinesia in severe mental illness. J. Clin. Psychopharmacol.25(5),448–456 (2005).
    • 202  Bakker PR, van Harten PN, van Os J: Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis. Schizophr. Res.83(2–3),185–192 (2006).
    • 203  Lattuada E, Cavallaro R, Serretti A, Lorenzi C, Smeraldi E: Tardive dyskinesia and DRD2, DRD3, DRD4, 5-HT2A variants in schizophrenia: an association study with repeated assessment. Int. J. Neuropsychopharmacol.7(4),489–493 (2004).
    • 204  Tan EC, Chong SA, Mahendran R, Dong F, Tan CH: Susceptibility to neuroleptic-induced tardive dyskinesia and the T102C polymorphism inthe serotonin type 2A receptor. Biol. Psychiatry.144,147–150 (2001).
    • 205  Lerer B, Segman RH, Tan EC et al.: Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. Int. J. Neuropsychopharmacol.8,411–425 (2005).
    • 206  Boke O, Gunes S, Kara N et al.: Association of serotonin 2A receptor and lack of association of CYP1A2 gene polymorphism with tardive dyskinesia in a Turkish population. DNA Cell Biol.26(8),527–531 (2007).
    • 207  Segman RH, Heresco-Levy U, Finkel B et al.: Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia: additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology (Berl.)152(4),408–413 (2000).
    • 208  Zhang ZJ, Zhang XB, Sha WW, Zhang XB, Reynolds GP: Association of a polymorphism in the promoter region of the serotonin 5-HT2C receptor gene with tardive dyskinesia in patients with schizophrenia. Mol. Psychiatry7(7),670–671 (2002).
    • 209  Ohmori O, Shinkai T, Hori H, Kojima H, Nakamura J: Polymorphisms of µ and δ opioid receptor genes and tardive dyskinesia in patients with schizophrenia. Schizophr. Res.52(1–2),137–138 (2001).
    • 210  Lai IC, Liao DL, Bai YM et al.: Association study of the estrogen receptor polymorphisms with tardive dyskinesia in schizophrenia. Neuropsychobiology46(4),173–175 (2002).
    • 211  Pae CU, Yu HS, Kim JJ et al.: Quinone oxidoreductase (NQO1) gene polymorphism (609C/T) may be associated with tardive dyskinesia, but not with the development of schizophrenia. Int. J. Neuropsychopharmacol.7(4),495–500 (2004).
    • 212  Liou YJ, Lai IC, Lin MW et al.: Haplotype analysis of endothelial nitric oxide synthase (NOS3) genetic variants and tardive dyskinesia in patients with schizophrenia. Pharmacogenet. Genomics16(3),151–157 (2006).
    • 301  AmpliChip® Home www.amplichip.us/
    • 302  Roche Amplichip background information www.roche.com/med_backgr-ampli.htm
    • 303  Illumina whole-genome genotyping: human-1 genotyping beadchip www.illumina.com/pages.ilmn?ID=151
    • 304  International HapMap project www.hapmap.org