We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney

    Zoulikha M Zaïr

    University Hospital Zurich, Division of Clinical Pharmacology and Toxicology, Department of Internal Medicine, CH-8091, Zurich, Switzerland.

    ,
    Jyrki J Eloranta

    University Hospital Zurich, Division of Clinical Pharmacology and Toxicology, Department of Internal Medicine, CH-8091, Zurich, Switzerland.

    ,
    Bruno Stieger

    University Hospital Zurich, Division of Clinical Pharmacology and Toxicology, Department of Internal Medicine, CH-8091, Zurich, Switzerland.

    &
    Gerd A Kullak-Ublick

    † Author for correspondence

    University Hospital Zurich, Division of Clinical Pharmacology and Toxicology, Department of Internal Medicine, CH-8091, Zurich, Switzerland.

    Published Online:https://doi.org/10.2217/14622416.9.5.597

    The role of carrier-mediated transport in determining the pharmacokinetics of drugs has become increasingly evident with the discovery of genetic variants that affect expression and/or function of a given drug transporter. Drug transporters are expressed at numerous epithelial barriers, such as intestinal epithelial cells, hepatocytes, renal tubular cells and at the blood–brain barrier. Several recent studies have associated alterations in substrate uptake with the presence of SNPs. Here, we summarize the current knowledge on the functional and phenotypic consequences of genetic variation in intestinally, hepatically and renally expressed members of the organic anion-transporting polypeptide family (OATPs; SLC21/SLCO family), the organic anion and organic cation transporters (OATs/OCTs; SLC22 family) and the peptide transporter-1 (PEPT1; SLC15 family).

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Kullak-Ublick GA, Stieger B, Meier PJ: Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology126,322–342 (2004).
    • Glaeser H, Bailey DG, Dresser GK et al.: Intestinal drug transporter expression and the impact of grapefruit juice in humans. Clin. Pharmacol. Ther.81,362–370 (2007).
    • Meier Y, Eloranta JJ, Darimont J et al.: Regional distribution of solute carrier mRNA expression along the human intestinal tract. Drug Metab. Dispos.35,590–594 (2007).
    • Chan LM, Lowes S, Hirst BH: The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur. J. Pharm. Sci.21,25–51 (2004).
    • Zuber R, Anzenbacherova E, Anzenbacher P: Cytochromes P450 and experimental models of drug metabolism. J. Cell. Mol. Med.6,189–198 (2002).
    • Cascorbi I: Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol. Ther.112,457–473 (2006).
    • Halestrap AP, Meredith D: The SLC16 gene family – from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch.447,619–628 (2004).
    • Evseenko D, Paxton JW, Keelan JA: Active transport across the human placenta: impact on drug efficacy and toxicity. Expert Opin. Drug Metab. Toxicol.2,51–69 (2006).
    • Suzuki T, Onogawa T, Asano N et al.: Identification and characterization of novel rat and human gonad-specific organic anion transporters. Mol. Endocrinol.17,1203–1215 (2003).
    • 10  Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J: Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab. Dispos.35,1333–1340 (2007).
    • 11  Freeman TC, Bentsen BS, Thwaites DT, Simmons NL: H+/di-tripeptide transporter (PepT1) expression in the rabbit intestine. Pflugers Arch.430,394–400 (1995).
    • 12  Brandsch M, Brandsch C, Ganapathy ME, Chew CS, Ganapathy V, Leibach FH: Influence of proton and essential histidyl residues on the transport kinetics of the H+/peptide cotransport systems in intestine (PEPT 1) and kidney (PEPT 2). Biochim. Biophys. Acta1324,251–262 (1997).
    • 13  Dantzig AH, Bergin L: Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim. Biophys. Acta1027,211–217 (1990).
    • 14  Satake M, Enjoh M, Nakamura Y et al.: Transepithelial transport of the bioactive tripeptide, Val–Pro–Pro, in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem.66,378–384 (2002).
    • 15  Anderle P, Nielsen CU, Pinsonneault J, Krog PL, Brodin B, Sadee W: Genetic variants of the human dipeptide transporter PEPT1. J. Pharmacol. Exp. Ther.316,636–646 (2006).•  Highlights the need for further trials investigating the effects of PEPT1 polymorphisms on drug transport.
    • 16  Zhang EY, Fu DJ, Pak YA et al.: Genetic polymorphisms in human proton-dependent dipeptide transporter PEPT1: implications for the functional role of Pro586. J. Pharmacol. Exp. Ther.310,437–445 (2004).
    • 17  Sala-Rabanal M, Loo DD, Hirayama BA, Turk E, Wright EM: Molecular interactions between dipeptides, drugs and the human intestinal H+-oligopeptide cotransporter hPEPT1. J. Physiol.574,149–166 (2006).• PEPT1 polymorphisms and the transport of dipeptide drugs.
    • 18  Yabuuchi H, Tamai I, Nezu J et al.: Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J. Pharmacol. Exp. Ther.289,768–773 (1999).
    • 19  Wu X, Huang W, Prasad PD et al.: Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J. Pharmacol. Exp. Ther.290,1482–1492 (1999).
    • 20  Leung E, Hong J, Fraser AG, Merriman TR, Vishnu P, Krissansen GW: Polymorphisms in the organic cation transporter genes SLC22A4 and SLC22A5 and Crohn’s disease in a New Zealand Caucasian cohort. Immunol. Cell. Biol.84,233–236 (2006).
    • 21  Palmieri O, Latiano A, Valvano R et al.: Variants of OCTN1–2 cation transporter genes are associated with both Crohn’s disease and ulcerative colitis. Aliment. Pharmacol. Ther.23,497–506 (2006).
    • 22  Peltekova VD, Wintle RF, Rubin LA et al.: Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat. Genet.36,471–475 (2004).
    • 23  Urban TJ, Brown C, Castro RA et al.: Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin. Pharmacol. Ther.83(3),416–421 (2008).•• Important clinical phenotype–genotype study.
    • 24  Hosoyamada M, Sekine T, Kanai Y, Endou H: Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am. J. Physiol.276,F122–F128 (1999).
    • 25  Kimura H, Takeda M, Narikawa S, Enomoto A, Ichida K, Endou H: Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J. Pharmacol. Exp. Ther.301,293–298 (2002).
    • 26  Babu E, Takeda M, Narikawa S et al.: Human organic anion transporters mediate the transport of tetracycline. Jpn J. Pharmacol.88,69–76 (2002).
    • 27  Xu G, Bhatnagar V, Wen G, Hamilton BA, Eraly SA, Nigam SK: Analyses of coding region polymorphisms in apical and basolateral human organic anion transporter (OAT) genes [OAT1 (NKT), OAT2, OAT3, OAT4, URAT (RST)]. Kidney Int.68,1491–1499 (2005).
    • 28  König J, Seithel A, Gradhand U, Fromm MF: Pharmacogenomics of human OATP transporters. Naunyn Schmiedebergs Arch. Pharmacol.372,432–443 (2006).
    • 29  Hagenbuch B, Meier PJ: The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta1609,1–18 (2003).
    • 30  Hagenbuch B, Meier PJ: Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch.447,653–665 (2004).• Excellent general review of the OATP family.
    • 31  Mikkaichi T, Suzuki T, Tanemoto M, Ito S, Abe T: The organic anion transporter (OATP) family. Drug Metab. Pharmacokinet.19,171–179 (2004).
    • 32  Gründemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H: Drug excretion mediated by a new prototype of polyspecific transporter. Nature372,549–552 (1994).
    • 33  Koepsell H, Lips K, Volk C: Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm. Res.24,1227–1251 (2007).
    • 34  Meyer-Wentrup F, Karbach U, Gorboulev V, Arndt P, Koepsell H: Membrane localization of the electrogenic cation transporter rOCT1 in rat liver. Biochem. Biophys. Res. Commun.248,673–678 (1998).
    • 35  Gorboulev V, Ulzheimer JC, Akhoundova A et al.: Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol.16,871–881 (1997).
    • 36  Zhang L, Dresser MJ, Gray AT, Yost SC, Terashita S, Giacomini KM: Cloning and functional expression of a human liver organic cation transporter. Mol. Pharmacol.51,913–921 (1997).
    • 37  Sakata T, Anzai N, Shin HJ et al.: Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochem. Biophys. Res. Commun.313,789–793 (2004).
    • 38  Itoda M, Saito Y, Maekawa K et al.: Seven novel single nucleotide polymorphisms in the human SLC22A1 gene encoding organic cation transporter 1 (OCT1). Drug Metab. Pharmacokinet.19,308–312 (2004).
    • 39  Takeuchi A, Motohashi H, Okuda M, Inui K: Decreased function of genetic variants, Pro283Leu and Arg287Gly, in human organic cation transporter hOCT1. Drug Metab. Pharmacokinet.18,409–412 (2003).
    • 40  Shu Y, Leabman MK, Feng B et al.: Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc. Natl Acad. Sci. USA100,5902–5907 (2003).
    • 41  Leabman MK, Huang CC, DeYoung J et al.: Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proc. Natl Acad. Sci. USA100,5896–5901 (2003).
    • 42  Kerb R, Brinkmann U, Chatskaia N et al.: Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics12,591–595 (2002).
    • 43  Kang HJ, Song IS, Shin HJ et al.: Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population. Drug Metab. Dispos.35,667–675 (2007).
    • 44  Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y: Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Exp. Ther.302,510–515 (2002).
    • 45  Shu Y, Sheardown SA, Brown C et al.: Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest.117,1422–1431 (2007).•• Associates a patient’s genotype with their phenotype upon metformin treatment.
    • 46  Shikata E, Yamamoto R, Takane H et al.: Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J. Hum. Genet.52,117–122 (2007).
    • 47  Kullak-Ublick GA, Ismair MG, Stieger B et al.: Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology120,525–533 (2001).
    • 48  König J, Cui Y, Nies AT, Keppler D: A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am. J. Physiol. Gastrointest. Liver Physiol.278,G156–G164 (2000).
    • 49  Abe T, Kakyo M, Tokui T et al.: Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J. Biol. Chem.274,17159–17163 (1999).
    • 50  Niemi M, Schaeffeler E, Lang T et al.: High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics14,429–440 (2004).
    • 51  Nozawa T, Nakajima M, Tamai I et al.: Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J. Pharmacol. Exp. Ther.302,804–813 (2002).
    • 52  Tirona RG, Leake BF, Merino G, Kim RB: Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European– and African–Americans. J. Biol. Chem.276,35669–35675 (2001).•• Important study on the pharmacogenetics of the OATP1B1 haplotypes.
    • 53  Choi JH, Lee MG, Cho JY, Lee JE, Kim KH, Park K: Influence of OATP1B1 genotype on the pharmacokinetics of rosuvastatin in Koreans. Clin. Pharmacol. Ther.83,251–257 (2008).
    • 54  Iwai M, Suzuki H, Ieiri I, Otsubo K, Sugiyama Y: Functional analysis of single nucleotide polymorphisms of hepatic organic anion transporter OATP1B1 (OATP-C). Pharmacogenetics14,749–757 (2004).
    • 55  Hsiang B, Zhu Y, Wang Z et al.: A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J. Biol. Chem.274,37161–37168 (1999).
    • 56  Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K: Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet. Genomics15,513–522 (2005).
    • 57  Nishizato Y, Ieiri I, Suzuki H et al.: Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin. Pharmacol. Ther.73,554–565 (2003).• Looks at the effects of OATP1B1 genetic variants on the transport of statins.
    • 58  Tachibana-Iimori R, Tabara Y, Kusuhara H et al.: Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab. Pharmacokinet.19,375–380 (2004).
    • 59  Mwinyi J, Johne A, Bauer S, Roots I, Gerloff T: Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin. Pharmacol. Ther.75,415–421 (2004).
    • 60  Morimoto K, Oishi T, Ueda S, Ueda M, Hosokawa M, Chiba K: A novel variant allele of OATP-C (SLCO1B1) found in a Japanese patient with pravastatin-induced myopathy. Drug Metab. Pharmacokinet.19,453–455 (2004).• Important study highlighting the effects of genetic drug transporter variants on drug-induced myopathy.
    • 61  Gerloff T, Schaefer M, Mwinyi J et al.: Influence of the SLCO1B1*1b and *5 haplotypes on pravastatin’s cholesterol lowering capabilities and basal sterol serum levels. Naunyn Schmiedebergs Arch. Pharmacol.373,45–50 (2006).
    • 62  Ho RH, Tirona RG, Leake BF et al.: Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology130,1793–1806 (2006).
    • 63  Chung JY, Cho JY, Yu KS et al.: Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther.78,342–350 (2005).
    • 64  Lee E, Ryan S, Birmingham B et al.: Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin. Pharmacol. Ther.78,330–341 (2005).
    • 65  Zhang W, He YJ, Han CT et al.: Effect of SLCO1B1 genetic polymorphism on the pharmacokinetics of nateglinide. Br. J. Clin. Pharmacol.62,567–572 (2006).
    • 66  Niemi M, Backman JT, Kajosaari LI et al.: Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin. Pharmacol. Ther.77,468–478 (2005).
    • 67  Ieiri I, Suzuki H, Kimura M et al.: Influence of common variants in the pharmacokinetic genes (OATP-C, UGT1A1, and MRP2) on serum bilirubin levels in healthy subjects. Hepatol. Res.30,91–95 (2004).
    • 68  Michalski C, Cui Y, Nies AT et al.: A naturally occurring mutation in the SLC21A6 gene causing impaired membrane localization of the hepatocyte uptake transporter. J. Biol. Chem.277,43058–43063 (2002).
    • 69  Iida A, Saito S, Sekine A et al.: Catalog of 258 single-nucleotide polymorphisms (SNPs) in genes encoding three organic anion transporters, three organic anion-transporting polypeptides, and three NADH:ubiquinone oxidoreductase flavoproteins. J. Hum. Genet.46,668–683 (2001).• One of the largest genetic screening studies evaluating OATP SNP distribution.
    • 70  Furihata T, Satoh T, Yamamoto N, Kobayashi K, Chiba K: Hepatocyte nuclear factor 1 α is a factor responsible for the interindividual variation of OATP1B1 mRNA levels in adult Japanese livers. Pharm. Res.24,2327–2332 (2007).•• Impact of transcription factors on drug-transporter function.
    • 71  Jung D, Hagenbuch B, Gresh L, Pontoglio M, Meier PJ, Kullak-Ublick GA: Characterization of the human OATP-C (SLC21A6) gene promoter and regulation of liver-specific OATP genes by hepatocyte nuclear factor 1 α. J. Biol. Chem.276,37206–37214 (2001).
    • 72  König J, Cui Y, Nies AT, Keppler D: Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J. Biol. Chem.275,23161–23168 (2000).
    • 73  Abe T, Unno M, Onogawa T et al.: LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology120,1689–1699 (2001).
    • 74  Tsujimoto M, Hirata S, Dan Y, Ohtani H, Sawada Y: Polymorphisms and linkage disequilibrium of the OATP8 (OATP1B3) gene in Japanese subjects. Drug Metab. Pharmacokinet.21,165–169 (2006).
    • 75  Letschert K, Keppler D, Konig J: Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics14,441–452 (2004).
    • 76  Smith NF, Marsh S, Scott-Horton TJ et al.: Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin. Pharmacol. Ther.81,76–82 (2007).
    • 77  Ismair MG, Stieger B, Cattori V et al.: Hepatic uptake of cholecystokinin octapeptide by organic anion-transporting polypeptides OATP4 and OATP8 of rat and human liver. Gastroenterology121,1185–1190 (2001).
    • 78  Jung D, Podvinec M, Meyer UA et al.: Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology122,1954–1966 (2002).
    • 79  Marzolini C, Tirona RG, Gervasini G et al.: A common polymorphism in the bile acid receptor farnesoid X receptor is associated with decreased hepatic target gene expression. Mol. Endocrinol.21,1769–1780 (2007).•• Detailed study of the effects of nuclear receptor polymorphisms on drug transporters.
    • 80  van Mil SW, Milona A, Dixon PH et al.: Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology133,507–516 (2007).•• Detailed study of the effects of nuclear receptor polymorphisms on drug transporters.
    • 81  Kobayashi D, Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I: Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J. Pharmacol. Exp. Ther.306,703–708 (2003).
    • 82  Nozawa T, Imai K, Nezu J, Tsuji A, Tamai I: Functional characterization of pH-sensitive organic anion transporting polypeptide OATP-B in human. J. Pharmacol. Exp. Ther.308,438–445 (2004).
    • 83  Tamai I, Nezu J, Uchino H et al.: Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun.273,251–260 (2000).
    • 84  Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y: A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl Acad. Sci. USA102,17923–17928 (2005).
    • 85  Masuda S, Terada T, Yonezawa A et al.: Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J. Am. Soc. Nephrol.17,2127–2135 (2006).
    • 86  Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K: Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem. Pharmacol.74,359–371 (2007).
    • 87  Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K: Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1–3 and multidrug and toxin extrusion family). J. Pharmacol. Exp. Ther.319,879–886 (2006).
    • 88  Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, Inui K: Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem. Pharmacol.74,477–487 (2007).
    • 89  Aslamkhan AG, Han YH, Yang XP, Zalups RK, Pritchard JB: Human renal organic anion transporter 1-dependent uptake and toxicity of mercuric-thiol conjugates in Madin–Darby canine kidney cells. Mol. Pharmacol.63,590–596 (2003).
    • 90  Lopez-Nieto CE, You G, Bush KT, Barros EJ, Beier DR, Nigam SK: Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J. Biol. Chem.272,6471–6478 (1997).
    • 91  Bleasby K, Hall LA, Perry JL, Mohrenweiser HW, Pritchard JB: Functional consequences of single nucleotide polymorphisms in the human organic anion transporter hOAT1 (SLC22A6). J. Pharmacol. Exp. Ther.314,923–931 (2005).
    • 92  Fujita T, Brown C, Carlson EJ et al.: Functional analysis of polymorphisms in the organic anion transporter, SLC22A6 (OAT1). Pharmacogenet. Genomics15,201–209 (2005).
    • 93  Erdman AR, Mangravite LM, Urban TJ et al.: The human organic anion transporter 3 (OAT3; SLC22A8): genetic variation and functional genomics. Am. J. Physiol. Renal Physiol.290,F905–F912 (2006).
    • 94  Motohashi H, Sakurai Y, Saito H et al.: Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J. Am. Soc. Nephrol.13,866–874 (2002).
    • 95  Urakami Y, Akazawa M, Saito H, Okuda M, Inui K: cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J. Am. Soc. Nephrol.13,1703–1710 (2002).
    • 96  Fukushima-Uesaka H, Maekawa K, Ozawa S et al.: Fourteen novel single nucleotide polymorphisms in the SLC22A2 gene encoding human organic cation transporter (OCT2). Drug Metab. Pharmacokinet.19,239–244 (2004).
    • 97  Saito S, Iida A, Sekine A et al.: Catalog of 238 variations among six human genes encoding solute carriers (hSLCs) in the Japanese population. J. Hum. Genet.47,576–584 (2002).
    • 98  Leabman MK, Huang CC, Kawamoto M et al.: Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics12,395–405 (2002).
    • 99  Kimura N, Masuda S, Tanihara Y et al.: Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab. Pharmacokinet.20,379–386 (2005).
    • 100  Nigam SK, Bush KT, Bhatnagar V: Drug and toxicant handling by the OAT organic anion transporters in the kidney and other tissues. Nat. Clin. Pract. Nephrol.3,443–448 (2007).
    • 101  Anzai N, Kanai Y, Endou H: Organic anion transporter family: current knowledge. J. Pharmacol. Sci.100,411–426 (2006).
    • 102  Robertson EE, Rankin GO: Human renal organic anion transporters: characteristics and contributions to drug and drug metabolite excretion. Pharmacol. Ther.109,399–412 (2006).
    • 103  Shitara Y, Sato H, Sugiyama Y: Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Annu. Rev. Pharmacol. Toxicol.45,689–723 (2005).
    • 104  Marzolini C, Tirona RG, Kim RB: Pharmacogenomics of the OATP and OAT families. Pharmacogenomics5,273–282 (2004).
    • 105  Wright SH: Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics. Toxicol. Appl. Pharmacol.204,309–319 (2005).
    • 106  Maeda T, Goto A, Kobayashi D, Tamai I: Transport of organic cations across the blood–testis barrier. Mol. Pharm.4,600–607 (2007).
    • 107  Pinsonneault J, Nielsen CU, Sadee W: Genetic variants of the human H+/dipeptide transporter PEPT2: analysis of haplotype functions. J. Pharmacol. Exp. Ther.311,1088–1096 (2004).
    • 108  Tirona RG, Leake BF, Wolkoff AW, Kim RB: Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J. Pharmacol. Exp. Ther.304,223–228 (2003).
    • 109  Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I: Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab. Dispos.33,434–439 (2005).
    • 201  NCBI Single Nucleotide Polymorphism Reference database www.ncbi.nlm.nih.gov/SNP/