We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Comprehensive assessment of metabolic enzyme and transporter genes using the Affymetrix® Targeted Genotyping System

    Carmen Dumaual

    Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.

    ,
    Xin Miao

    Affymetrix, Inc., 3420 Central Expressway, Santa Clara, CA 95051, USA

    ,
    Thomas M Daly

    Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.

    ,
    Carsten Bruckner

    Affymetrix, Inc., 3420 Central Expressway, Santa Clara, CA 95051, USA

    ,
    Reuben Njau

    Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.

    ,
    Dong-Jing Fu

    Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.

    Johnson & Johnson, Pharmaceutical Research and Development, LLC, 1000 route 202, Raritan, NJ 08869, USA

    ,
    Sandra Close-Kirkwood

    Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.

    ,
    Nancy Bauer

    Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.

    ,
    Nancy Watanabe

    Affymetrix, Inc., 3420 Central Expressway, Santa Clara, CA 95051, USA

    Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA

    ,
    Paul Hardenbol

    Affymetrix, Inc., 3420 Central Expressway, Santa Clara, CA 95051, USA

    &
    Richard D Hockett

    † Author for correspondence

    Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.

    Published Online:https://doi.org/10.2217/14622416.8.3.293

    The combined effects of multiple polymorphisms in several drug-metabolizing enzyme and transporter genes can contribute to considerable interindividual variation in drug disposition and response. Therefore, it has been of increasing interest to generate scalable, flexible and cost-effective technologies for large-scale genotyping of the drug-metabolizing enzyme and transporter genes. However, the number of drug-metabolizing enzyme and transporter gene variants exceeds the capacity of current technologies to comprehensively assess multiple polymorphisms in a single, multiplexed assay. The Targeted Genotyping System (Affymetrix®, CA, USA) provides a solution to this challenge, by combining molecular inversion probe technology with universal microarrays to provide a method that is capable of analyzing thousands of variants in a single reaction, while remaining relatively insensitive to cross-reactivity between reaction components. This review will focus on the Targeted Genotyping System and how this technology was adapted to enable comprehensive analysis of drug-metabolizing enzyme and transporter gene polymorphisms.

    Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

    Bibliography

    • Lewis DF: Human P450s in the metabolism of drugs: molecular modelling of enzyme-substrate interactions. Expert Opin. Drug Metab. Toxicol.1(1),5–8 (2005).• Review of the cytochrome P450 enzymes and their role in metabolism.
    • Choudhuri S, Klaassen CD: Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP) and ABCG2 (BCRP) efflux transporters. Int. J. Toxicol.25(4),231–259 (2006).
    • Ishikawa T, Tsuji A, Inui K et al.: The genetic polymorphism of drug transporters: functional analysis approaches. Pharmacogenomics5(1),67–99 (2004).
    • Werck-Reichhart D, Feyereisen R: Cytochromes P450: a success story. Genome Biol.1(6),REVIEWS3003 (2000).
    • Cascorbi I: Genetic basis of toxic reactions to drugs and chemicals. Toxicol. Lett.162(1),16–28 (2006).• Describes the role of several drug-metabolizing enzyme polymorphisms in drug toxicity.
    • Gemignani F, Landi S, Vivant F et al.: A catalogue of polymorphisms related to xenobiotic metabolism and cancer susceptibility. Pharmacogenetics12(6),459–463 (2002).
    • Liebler DC, Guengerich FP: Elucidating mechanisms of drug-induced toxicity. Nat. Rev. Drug Discov.4(5),410–420 (2005).
    • Sakurai A, Tamura A, Onishi Y, Ishikawa T: Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCG2: therapeutic implications. Expert Opin. Pharmacother.6(14),2455–2473 (2005).
    • Evans WE, McLeod HL: Pharmacogenomics – drug disposition, drug targets, and side effects. N. Engl. J. Med.348(6),538–549 (2003).
    • 10  Dervieux T, Meshkin B, Neri B: Pharmacogenetic testing: proofs of principle and pharmacoeconomic implications. Mutat. Res.573(1–2),180–194 (2005).•• Provides case examples that highlight the clinical utility of drug-metabolizing enzyme and transporter genotype analysis.
    • 11  Bonnet-Brilhault F, Broly F, Blanc R et al.: An ADHD 6-year-old child ultrarapid metabolizer for CYP2D6. J. Clin. Psychopharmacol.26(4),442–444 (2006).
    • 12  Eichelbaum M, Kroemer HK, Mikus G: Genetically determined differences in drug metabolism as a risk factor in drug toxicity. Toxicol. Lett.64–65 Spec No, 115–122 (1992).
    • 13  Furuta T, Shirai N, Sugimoto M et al.: Influence of CYP2C19 pharmacogenetic polymorphism on proton pump inhibitor-based therapies. Drug Metab. Pharmacokinet.20(3),153–167 (2005).
    • 14  Johnson M, Markham-Abedi C, Susce MT et al.: A poor metabolizer for cytochromes P450 2D6 and 2C19: a case report on antidepressant treatment. CNS Spectr.11(10),757–760 (2006).
    • 15  Kirchheiner J, Henckel HB, Franke L et al.: Impact of the CYP2D6 ultra-rapid metabolizer genotype on doxepin pharmacokinetics and serotonin in platelets. Pharmacogenet. Genomics15(8),579–587 (2005).
    • 16  Zanger UM, Raimundo S, Eichelbaum M: Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch. Pharmacol.369(1),23–37 (2004).
    • 17  Shah RR: Can pharmacogenetics help rescue drugs withdrawn from the market? Pharmacogenomics7(6),889–908 (2006).
    • 18  Monro AM: Why do so many drugs fail between the laboratory and the marketplace? In: The Use of Human in vitro System to Support Preclinical and Clinical Safety Assessment. Sundwall A, Alván G, Lindgren E, Moldéus P, Salmonsson T, Sjöberg P (Eds), Swedish Association of the Pharmaceutical Industry and Medical Products Agency, Stockholm, Sweden, 1–4 (1996).
    • 19  Gut IG: Automation in genotyping of single nucleotide polymorphisms. Hum. Mutat.17(6),475–492 (2001).
    • 20  Kristensen VN, Kelefiotis D, Kristensen T, Borresen-Dale AL: High-throughput methods for detection of genetic variation. Biotechniques30(2),318–326 (2001).
    • 21  Kwok PY: Methods for genotyping single nucleotide polymorphisms. Annu. Rev. Genomics Hum. Genet.2,235–258 (2001).
    • 22  Kwok PY: High-throughput genotyping assay approaches. Pharmacogenomics1(1),95–100 (2000).
    • 23  Shi MM: Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin. Chem.47(2),164–172 (2001).
    • 24  Tsuchihashi Z, Dracopoli NC: Progress in high throughput SNP genotyping methods. Pharmacogenomics J.2(2),103–110 (2002).
    • 25  Jenkins S, Gibson N: High-throughput SNP genotyping. Comp. Funct. Genomics3,57–66 (2002).
    • 26  Ragoussis J, Elvidge GP, Kaur K, Colella S: Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry in genomics research. PLoS Genet.2(7),e100 (2006).
    • 27  de la Vega FM, Lazaruk KD, Rhodes MD, Wenz MH: Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP Genotyping Assays and the SNPlex Genotyping System. Mutat. Res.573(1–2),111–135 (2005).
    • 28  Tobler AR, Short S, Andersen MR et al.: The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J. Biomol. Tech.16(4),398–406 (2005).
    • 29  Dunbar SA: Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin. Chim. Acta363(1–2),71–82 (2006).
    • 30  Kokoris M, Dix K, Moynihan K et al.: High-throughput SNP genotyping with the Masscode system. Mol. Diagn.5(4),329–340 (2000).
    • 31  Macdonald SJ, Pastinen T, Genissel A, Cornforth TW, Long AD: A low-cost open-source SNP genotyping platform for association mapping applications. Genome Biol.6(12),R105 (2005).
    • 32  Shen R, Fan JB, Campbell D et al.: High-throughput SNP genotyping on universal bead arrays. Mutat. Res.573(1–2),70–82 (2005).
    • 33  Bell PA, Chaturvedi S, Gelfand CA et al.: SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques Suppl. 70–2, 74,76–77 (2002).
    • 34  Pastinen T, Raitio M, Lindroos K et al.: A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res.10(7),1031–1042 (2000).
    • 35  Hardenbol P, Baner J, Jain M et al.: Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat. Biotechnol.21(6),673–678 (2003).•• Detailed description of the advantages of molecular inversion probe technology.
    • 36  Hardenbol P, Yu F, Belmont J et al.: Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res.15(2),269–275 (2005).
    • 37  Moorhead M, Hardenbol P, Siddiqui F et al.: Optimal genotype determination in highly multiplexed SNP data. Eur. J. Hum. Genet.14(2),207–215 (2006).
    • 38  ParAllele Bioscience, Inc.: TrueCall™ Analyzer Software User Guide, Rev. 4.0.ParAllele BioScience, Inc. (now a part of Affymetrix, Inc., [CA, USA]) 2–7 (2005).
    • 39  The International HapMap Consortium: A haplotype map of the human genome. Nature437(7063),1299–1320 (2005).
    • 40  Taylor AL, Ziesche S, Yancy C et al.: Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N. Engl. J. Med.351(20),2049–2057 (2004).
    • 41  Hiratsuka M, Inoue T, Omori F, Agatsuma Y, Mizugaki M: Genetic analysis of thiopurine methyltransferase polymorphism in a Japanese population. Mutat. Res.448(1),91–95 (2000).
    • 42  Relling MV, Hancock ML, Rivera GK et al.: Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J. Natl Cancer Inst.91(23),2001–2008 (1999).
    • 43  Herman D, Locatelli I, Grabnar I et al.: Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J.5(3),193–202 (2005).
    • 44  Kirchheiner J, Brockmoller J: Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin. Pharmacol. Ther.77(1),1–16 (2005).
    • 45  Peyvandi F, Spreafico M, Siboni SM, Moia M, Mannucci PM: CYP2C9 genotypes and dose requirements during the induction phase of oral anticoagulant therapy. Clin. Pharmacol. Ther.75(3),198–203 (2004).
    • 46  Ando Y, Hasegawa Y: Clinical pharmacogenetics of irinotecan (CPT-11). Drug Metab. Rev.37(3),565–574 (2005).
    • 47  Ando Y, Ueoka H, Sugiyama T et al.: Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan. Ther. Drug Monit.24(1),111–116 (2002).
    • 48  O'Dwyer PJ, Catalano RB: Uridine diphosphate glucuronosyltransferase (UGT) 1A1 and irinotecan: practical pharmacogenomics arrives in cancer therapy. J. Clin. Oncol.24(28),4534–4538 (2006).
    • 101  Human Cytochrome P450 Allele Nomenclature Committee www.cypalleles.ki.se/
    • 102  National Centre for Biotechnology Information single nucleotide polymorphism database www.ncbi.nlm.nih.gov/projects/SNP/
    • 103  The Pharmacogenetics and Pharmacogenomics Knowledge Base www.pharmgkb.org/index.jsp
    • 104  Roche Diagnostics AmpliChip® information www.amplichip.us/?gclid=CNvPgrX1zogCFQFISQod1DFrCg
    • 105  Third Wave Technologies, Inc. www.twt.com