We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The neurobiology of pain perception in normal and persistent pain

    Bradford W Fenton

    *Author for correspondence:

    E-mail Address: Fentonb@summahealth.org

    Summa Health System, Department of Obstetrics & Gynecology, 75 Arch St Ste 102, Akron, OH 44304, USA

    ,
    Elim Shih

    Women's Health Fellow, Cleveland Clinic Foundation, 9500 Euclid Avenue, Desk A10, Cleveland, OH 44195, USA

    &
    Jessica Zolton

    Summa Health System, Department of Obstetrics & Gynecology, 75 Arch St Ste 102, Akron, OH 44304, USA

    Published Online:https://doi.org/10.2217/pmt.15.27

    SUMMARY 

    Pain is a significant national burden in terms of patient suffering, expenditure and lost productivity. Understanding pain is fundamental to improving evaluation, treatment and innovation in the management of acute and persistent pain syndromes. Pain perception begins in the periphery, and then ascends in several tracts, relaying at different levels. Pain signals arrive in the thalamus and midbrain structures which form the pain neuromatrix, a constantly shifting set of networks and connections that determine conscious perception. Several cortical regions become active simultaneously during pain perception; activity in the cortical pain matrix evolves over time to produce a complex pain perception network. Dysfunction at any level has the potential to produce unregulated, persistent pain.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Committee on Advancing Pain Research Care, and Education, Institute of Medicine. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research. The National Academies Press, Washington, DC, USA (2011).
    • 2 Taxonomy ITFO. Part III. Pain terms, a current list with definitions and notes on usage. In: Classification of Chronic Pain. Merskey H, Bogduk N (Eds). IASP Press, Seattle, WA, USA, 209–214 (1994).
    • 3 Julius D. TRP channels and pain. Ann. Rev. Cell Devel. Biol. 29, 355–384 (2013).
    • 4 Gangadharan V, Kuner R. Pain hypersensitivity mechanisms at a glance. Dis. Model Mech. 6(4), 889–895 (2013).•• This review summarizes the peripheral receptor nocioception process and provides an excellent illustration of the different mechanisms through which persistent pain can arise in the nerve ending.
    • 5 Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjork E, Handwerker H. Novel classes of responsive and unresponsive C nociceptors in human skin. J. Neurosci. 15(1 Pt 1), 333–341 (1995).
    • 6 Jaggi AS, Singh N. Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res. 1381, 187–201 (2011).
    • 7 Mason P. Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions. Annu. Rev. Neurosci. 24, 737–777 (2001).
    • 8 Sanchez-Catalan MJ, Kaufling J, Georges F, Veinante P, Barrot M. The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience 282C, 198–216 (2014).
    • 9 Jing YY, Wang JY, Li XL et al. Nerve growth factor of red nucleus involvement in pain induced by spared nerve injury of the rat sciatic nerve. Neurochem. Res. 34(9), 1612–1618 (2009).
    • 10 Petrosino S, Palazzo E, De Novellis V et al. Changes in spinal and supraspinal endocannabinoid levels in neuropathic rats. Neuropharmacology 52(2), 415–422 (2007).
    • 11 Lovick TA. Pro-nociceptive action of cholecystokinin in the periaqueductal grey: a role in neuropathic and anxiety-induced hyperalgesic states. Neurosci. Biobehav. Rev. 32(4), 852–862 (2008).
    • 12 Loyd DR, Murphy AZ. The role of the periaqueductal gray in the modulation of pain in males and females: are the anatomy and physiology really that different? Neural Plast. 462879 (2009).
    • 13 Lau BK, Vaughan CW. Descending modulation of pain the GABA disinhibition hypothesis of analgesia. Curr. Opin. Neurobiol. 29, 159–164 (2014).
    • 14 Chen WK, Liu IY, Chang YT et al. Ca(v)3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain. J. Neurosci. 30(31), 10360–10368 (2010).
    • 15 Shelton L, Becerra L, Borsook D. Unmasking the mysteries of the habenula in pain and analgesia. Prog. Neurobiol. 96(2), 208–219 (2012).
    • 16 Wei H, Viisanen H, Pertovaara A. Descending modulation of neuropathic hypersensitivity by dopamine D2 receptors in or adjacent to the hypothalamic A11 cell group. Pharmacol. Res. 59(5), 355–363 (2009).
    • 17 Takeda K, Muramatsu M, Chikuma T, Kato T. Effect of memantine on the levels of neuropeptides and microglial cells in the brain regions of rats with neuropathic pain. J. Mol. Neurosci. 39(3), 380–390 (2009).
    • 18 Yen CT, Lu PL. Thalamus and pain. Acta Anaesthesiol. Taiwan 51(2), 73–80 (2013).
    • 19 Cornwall J, Phillipson OT. Afferent projections to the dorsal thalamus of the rat as shown by retrograde lectin transport–I. The mediodorsal nucleus. Neuroscience 24(3), 1035–1049 (1988).
    • 20 Ray JP, Price JL. The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 337(1), 1–31 (1993).
    • 21 Moulton EA, Schmahmann JD, Becerra L, Borsook D. The cerebellum and pain passive integrator or active participator? Brain Res. Rev. 65(1), 14–27 (2010).
    • 22 Meerwijk EL, Ford JM, Weiss SJ. Brain regions associated with psychological pain implications for a neural network and its relationship to physical pain. Brain Imaging Behav. 7(1), 1–14 (2013).
    • 23 Houck BD, Person AL. Cerebellar loops: a review of the nucleocortical pathway. Cerebellum 13(3), 378–385 (2014).
    • 24 Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: a review. Pain 154(Suppl. 1), S29–S43 (2013).•• The cortical pain matrix model.
    • 25 Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci. 38(2), 86–95 (2015).•• The dynamic pain connectome in the cortex.
    • 26 Fenton BW. Limbic associated pelvic pain: a hypothesis to explain the diagnostic relationships and features of patients with chronic pelvic pain. Med. Hypotheses 69(2), 282–286 (2007).
    • 27 Loeser JD. Pain and suffering. Clin. J. Pain 16(2 Suppl.), S2–S6 (2000).
    • 28 Buzsaki G. Rhythms of the Brain. Oxford University Press, USA (2011).•• An excellent and readable explanation of electrical activity in the brain.
    • 29 Raichle ME, Macleod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc. Natl Acad. Sci. USA 98(2), 676–682 (2001).• An introduction to the default mode network in the cortex.
    • 30 Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J. Neurosci. 28(6), 1398–1403 (2008).
    • 31 Kucyi A, Moayedi M, Weissman-Fogel I et al. Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. J. Neurosci. 34(11), 3969–3975 (2014).
    • 32 Vogt BA. Cingulate Neurobiology and Sisease. Oxford University Press, Oxford, UK (2009).• A comprehensive text on the different functions of the cingulate cortex.
    • 33 Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 6(7), 533–544 (2005).
    • 34 Vogt BA. Submodalities of emotion in the context of cingulate subregions. Cortex 59, 197–202 (2014).
    • 35 Rolls ET. Limbic systems for emotion and for memory, but no single limbic system. Cortex 62, 1159–157 (2015).
    • 36 Bush G, Vogt BA, Holmes J et al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc. Natl Acad. Sci. USA 99(1), 523–528 (2002).
    • 37 Viswanathan A, Harsh V, Pereira EA, Aziz TZ. Cingulotomy for medically refractory cancer pain. Neurosurg. Focus 35(3), E1 (2013).
    • 38 Walton KD, Dubois M, Llinas RR. Abnormal thalamocortical activity in patients with Complex Regional Pain Syndrome (CRPS) type I. Pain 150(1), 41–51 (2010).
    • 39 Jones EG. Thalamocortical dysrhythmia and chronic pain. Pain 150(1), 4–5 (2010).• A decription of pain based on interaction between the thalamus and cortex.
    • 40 Del Cul A, Baillet S, Dehaene S. Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biol. 5(10), e260 (2007).
    • 41 Ivo R, Nicklas A, Dargel J et al. Brain structural and psychometric alterations in chronic low back pain. Eur. Spine J. 22(9), 1958–1964 (2013).
    • 42 Badre D. Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends Cogn. Sci. 12(5), 193–200 (2008).
    • 43 Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15(2), 85–93 (2011).
    • 44 Ohira H, Nomura M, Ichikawa N et al. Association of neural and physiological responses during voluntary emotion suppression. Neuroimage 29(3), 721–733 (2006).
    • 45 Leknes S, Berna C, Lee MC, Snyder GD, Biele G, Tracey I. The importance of context: when relative relief renders pain pleasant. Pain 154(3), 402–410 (2013).
    • 46 Haggard P, Iannetti GD, Longo MR. Spatial sensory organization and body representation in pain perception. Curr. Biol. 23(4), R164–R176 (2013).
    • 47 Omori S, Isose S, Otsuru N et al. Somatotopic representation of pain in the primary somatosensory cortex (S1) in humans. Clin. Neurophysiol. 124(7), 1422–1430 (2013).
    • 48 Frot M, Magnin M, Mauguiere F, Garcia-Larrea L. Cortical representation of pain in primary sensory-motor areas (S1/M1) – a study using intracortical recordings in humans. Hum. Brain Mapp. 34(10), 2655–2668 (2013).
    • 49 Melzack R. Phantom limbs and the concept of a neuromatrix. Trends Neurosci. 13(3), 88–92 (1990).• The first description of a neuromatrix for pain perception.
    • 50 Lorenz J, Casey KL. Imaging of acute versus pathological pain in humans. Eur. J. Pain 9(2), 163–165 (2005).
    • 51 Diatchenko L, Slade GD, Nackley AG et al. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum. Mol. Genet. 14(1), 135–143 (2005).
    • 52 Krishnan V, Han MH, Graham DL et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131(2), 391–404 (2007).
    • 53 Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded: a salience detection system for the body. Prog. Neurobiol. 93(1), 111–124 (2011).
    • 54 Garcia-Larrea L. The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol. Clin. 42(5), 299–313 (2012).
    • 55 Lenz FA, Gracely RH, Romanoski AJ, Hope EJ, Rowland LH, Dougherty PM. Stimulation in the human somatosensory thalamus can reproduce both the affective and sensory dimensions of previously experienced pain. Nat. Med. 1(9), 910–913 (1995).
    • 56 Isnard J, Magnin M, Jung J, Mauguiere F, Garcia-Larrea L. Does the insula tell our brain that we are in pain? Pain 152(4), 946–951 (2011).
    • 57 Pomares FB, Faillenot I, Barral FG, Peyron R. The ‘where’ and the ‘when’ of the BOLD response to pain in the insular cortex. Discussion on amplitudes and latencies. Neuroimage 64, 466–475 (2013).
    • 58 Wiech K, Ploner M, Tracey I. Neurocognitive aspects of pain perception. Trends Cogn. Sci. 12(8), 306–313 (2008).
    • 59 Abrahamsen R, Dietz M, Lodahl S et al. Effect of hypnotic pain modulation on brain activity in patients with temporomandibular disorder pain. Pain 151(3), 825–833 (2010).
    • 60 Lamm C, Decety J, Singer T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage 54(3), 2492–2502 (2011).
    • 61 Dehaene S, Changeux JP, Naccache L, Sackur J, Sergent C. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn. Sci. 10(5), 204–211 (2006).
    • 62 Grant JA, Courtemanche J, Rainville P. A non-elaborative mental stance and decoupling of executive and pain-related cortices predicts low pain sensitivity in Zen meditators. Pain 152(1), 150–156 (2011).
    • 63 Fayed N, Andres E, Rojas G et al. Brain dysfunction in fibromyalgia and somatization disorder using proton magnetic resonance spectroscopy: a controlled study. Acta Psychiatr. Scand. 126(2), 115–125 (2012).
    • 64 Lenz FA, Rios M, Zirh A, Chau D, Krauss G, Lesser RP. Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J. Neurophysiol. 79(4), 2231–2234 (1998).
    • 65 Sheng F, Han X, Han S. Dissociated neural representations of pain expressions of different races. Cereb. Cortex doi:10.1093/cercor/bhu314 (2015) (Epub ahead of print).
    • 66 Jensen MP, Gianas A, Sherlin LH, Howe JD. Pain catastrophizing and EEG-alpha asymmetry. Clin. J. Pain (2014) (Epub ahead of print).
    • 67 Klug S, Anderer P, Saletu-Zyhlarz G et al. Dysfunctional pain modulation in somatoform pain disorder patients. Eur. Arch. Psychiatry Clin. Neurosci. 261(4), 267–275 (2011).
    • 68 Apkarian AV, Sosa Y, Sonty S et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neurosci. 24(46), 10410–10415 (2004).
    • 69 Lelic D, Olesen SS, Valeriani M, Drewes AM. Brain source connectivity reveals the visceral pain network. Neuroimage 60(1), 37–46 (2012).• A review of visceral pain and cortical activity.
    • 70 Farmer MA, Chanda ML, Parks EL, Baliki MN, Apkarian AV, Schaeffer AJ. Brain functional and anatomical changes in chronic prostatitis/chronic pelvic pain syndrome. J. Urol. 186(1), 117–124 (2011).
    • 71 Komisaruk BR, Whipple B. Functional MRI of the brain during orgasm in women. Annu. Rev. Sex Res. 16, 62–86 (2005).
    • 72 De Felice M, Sanoja R, Wang R et al. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain 152(12), 2701–2709 (2011).
    • 73 Pud D, Granovsky Y, Yarnitsky D. The methodology of experimentally induced diffuse noxious inhibitory control (DNIC)-like effect in humans. Pain 144(1–2), 16–19 (2009).
    • 74 Nakata H, Sakamoto K, Kakigi R. Meditation reduces pain-related neural activity in the anterior cingulate cortex, insula, secondary somatosensory cortex, and thalamus. Front. Psychol. 5, 1489 (2014).
    • 75 Moont R, Crispel Y, Lev R, Pud D, Yarnitsky D. Temporal changes in cortical activation during conditioned pain modulation (CPM), a LORETA study. Pain 152(7), 1469–1477 (2011).
    • 76 Benedetti F. Placebo effects. from the neurobiological paradigm to translational implications. Neuron 84(3), 623–637 (2014).•• A review of placebo analgesia mechanisms.
    • 77 IASP Taxonomy. www.iasp-pain.org/taxonomy.
    • 78 Lewis GN, Rice DA, Mcnair PJ, Kluger M. Predictors of persistent pain after total knee arthroplasty: a systematic review and meta-analysis. Br. J. Anaesth. 114(4), 551–561 (2015).• Persistant pain mechanisms described.
    • 79 Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat. Med. 16(11), 1248–1257 (2010).
    • 80 Gerdle B, Ghafouri B, Ernberg M, Larsson B. Chronic musculoskeletal pain review of mechanisms and biochemical biomarkers as assessed by the microdialysis technique. J. Pain Res. 7, 313–326 (2014).
    • 81 Hirth M, Rukwied R, Gromann A et al. Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density. Pain 154(11), 2500–2511 (2013).
    • 82 Woolf CJ, Costigan M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc. Natl Acad. Sci. USA 96(14), 7723–7730 (1999).
    • 83 Kim CF, Moalem-Taylor G. Detailed characterization of neuro-immune responses following neuropathic injury in mice. Brain Res. 1405, 95–108 (2011).
    • 84 Mantyh PW. The neurobiology of skeletal pain. Eur. J. Neurosci. 39(3), 508–519 (2014).
    • 85 Namer B, Schick M, Kleggetveit IP et al. Differential sensitization of silent nociceptors to low pH stimulation by prostaglandin E2 in human volunteers. Eur. J. Pain 19(2), 159–166 (2014).• Silent nociceptor activation in chronic pain.
    • 86 Butrick CW. Interstitial cystitis and chronic pelvic pain new insights in neuropathology, diagnosis, and treatment. Clin. Obstet. Gynecol. 46(4), 811–823 (2003).
    • 87 Inquimbert P, Bartels K, Babaniyi OB, Barrett LB, Tegeder I, Scholz J. Peripheral nerve injury produces a sustained shift in the balance between glutamate release and uptake in the dorsal horn of the spinal cord. Pain 153(12), 2422–2431 (2012).
    • 88 Sandkuhler J. Models and mechanisms of hyperalgesia and allodynia. Physiol. Rev. 89(2), 707–758 (2009).
    • 89 Viisanen H, Pertovaara A. Roles of the rostroventromedial medulla and the spinal 5-HT(1A) receptor in descending antinociception induced by motor cortex stimulation in the neuropathic rat. Neurosci. Lett. 476(3), 133–137 (2010).
    • 90 Tsai YJ, Lin CT, Huang CT et al. Neuropeptide Y modulates c-Fos protein expression in the cuneate nucleus and contributes to mechanical hypersensitivity following rat median nerve injury. J. Neurotrauma. 26(9), 1609–1621 (2009).
    • 91 Gosselin RD, Bebber D, Decosterd I. Upregulation of the GABA transporter GAT-1 in the gracile nucleus in the spared nerve injury model of neuropathic pain. Neurosci. Lett. 480(2), 132–137 (2010).
    • 92 Tsuruoka M, Willis WD Jr. Bilateral lesions in the area of the nucleus locus coeruleus affect the development of hyperalgesia during carrageenan-induced inflammation. Brain Res. 726(1–2), 233–236 (1996).
    • 93 Brightwell JJ, Taylor BK. Noradrenergic neurons in the locus coeruleus contribute to neuropathic pain. Neuroscience 160(1), 174–185 (2009).
    • 94 Fishbain DA, Lewis JE, Gao J. Are psychoactive substance (opioid)-dependent chronic pain patients hyperalgesic? Pain Pract. 11(4), 337–343 (2011).
    • 95 Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature 306(5944), 686–688 (1983).
    • 96 Seminowicz DA, Laferriere AL, Millecamps M, Yu JS, Coderre TJ, Bushnell MC. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage 47(3), 1007–1014 (2009).
    • 97 Davis KD, Kiss ZH, Luo L, Tasker RR, Lozano AM, Dostrovsky JO. Phantom sensations generated by thalamic microstimulation. Nature 391(6665), 385–387 (1998).
    • 98 Ansah OB, Leite-Almeida H, Wei H, Pertovaara A. Striatal dopamine D2 receptors attenuate neuropathic hypersensitivity in the rat. Exp. Neurol. 205(2), 536–546 (2007).
    • 99 Ikeda R, Takahashi Y, Inoue K, Kato F. NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain 127(1–2), 161–172 (2007).
    • 100 Carrasquillo Y, Gereau RWT. Hemispheric lateralization of a molecular signal for pain modulation in the amygdala. Mol. Pain 4, 24 (2008).
    • 101 Neugebauer V, Galhardo V, Maione S, Mackey SC. Forebrain pain mechanisms. Brain Res. Rev. 60(1), 226–242 (2009).
    • 102 Coffeen U, Manuel Ortega-Legaspi J, Lopez-Munoz FJ, Simon-Arceo K, Jaimes O, Pellicer F. Insular cortex lesion diminishes neuropathic and inflammatory pain-like behaviours. Eur. J. Pain 15(2), 132–138 (2011).
    • 103 Baliki M, Al-Amin HA, Atweh SF et al. Attenuation of neuropathic manifestations by local block of the activities of the ventrolateral orbito-frontal area in the rat. Neuroscience 120(4), 1093–1104 (2003).
    • 104 Toyoda H, Zhao MG, Zhuo M. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain. Mol. Pain 5, 4 (2009).
    • 105 Takeda R, Watanabe Y, Ikeda T et al. Analgesic effect of milnacipran is associated with c-Fos expression in the anterior cingulate cortex in the rat neuropathic pain model. Neurosci. Res. 64(4), 380–384 (2009).
    • 106 Hoot MR, Sim-Selley LJ, Poklis JL et al. Chronic constriction injury reduces cannabinoid receptor 1 activity in the rostral anterior cingulate cortex of mice. Brain Res. 1339, 18–25 (2010).
    • 107 Al Amin HA, Atweh SF, Baki SA, Jabbur SJ, Saade NE. Continuous perfusion with morphine of the orbitofrontal cortex reduces allodynia and hyperalgesia in a rat model for mononeuropathy. Neurosci. Lett. 364(1), 27–31 (2004).
    • 108 Fuccio C, Luongo C, Capodanno P et al. A single subcutaneous injection of ozone prevents allodynia and decreases the over-expression of pro-inflammatory caspases in the orbito-frontal cortex of neuropathic mice. Eur. J. Pharmacol. 603(1–3), 42–49 (2009).
    • 109 Pahapill PA, Zhang W. Restoration of altered somatosensory cortical representation with spinal cord stimulation therapy in a patient with complex regional pain syndrome: a magnetoencephalography case study. Neuromodulation 17(1), 22–26; discussion 26–27 (2014).
    • 110 De Tommaso M, Delussi M, Vecchio E, Sciruicchio V, Invitto S, Livrea P. Sleep features and central sensitization symptoms in primary headache patients. J. Headache Pain 15, 64 (2014).
    • 111 Fenton BW, Grey SF, Armstrong A, Mccarroll M, Von Gruenigen V. Latent profile analysis of pelvic floor muscle pain in patients with chronic pelvic pain. Minerva Ginecol. 65(1), 69–78 (2013).
    • 112 Fenton BW, Grey SF, Reichenbach M, Mccarroll M, Von Gruenigen V. Phenotyping chronic pelvic pain based on latent class modeling of physical examination. Pain Res. Treat. 891301 (2013).
    • 113 Goldberg YP, Price N, Namdari R et al. Treatment of Na(v)1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain 153(1), 80–85 (2012).
    • 114 Cox JJ, Sheynin J, Shorer Z et al. Congenital insensitivity to pain novel SCN9A missense and in-frame deletion mutations. Hum. Mutat. 31(9), E1670–E1686 (2010).
    • 115 Yu XH, Cao CQ, Martino G et al. A peripherally restricted cannabinoid receptor agonist produces robust anti-nociceptive effects in rodent models of inflammatory and neuropathic pain. Pain 151(2), 337–344 (2010).
    • 116 Fan QQ, Li L, Wang WT, Yang X, Suo ZW, Hu XD. Activation of alpha2 adrenoceptors inhibited NMDA receptor-mediated nociceptive transmission in spinal dorsal horn of mice with inflammatory pain. Neuropharmacology 77, 185–192 (2014).
    • 117 Zhang Z, Tao W, Hou YY, Wang W, Kenny PJ, Pan ZZ. MeCP2 repression of G9a in regulation of pain and morphine reward. J. Neurosci. 34(27), 9076–9087 (2014).
    • 118 Silva GD, Lopes P, Fonoff ET, Pagano RL. The spinal anti-inflammatory mechanism of motor cortex stimulation: cause of success and refractoriness in neuropathic pain? J. Neuroinflammation 12(1), 10 (2015).
    • 119 Schnitzer TJ, Marks JA. A systematic review of the efficacy and general safety of antibodies to NGF in the treatment of OA of the hip or knee. Osteoarthritis Cartilage 23(Suppl. 1), S8–S17 (2015).
    • 120 Simis M, Reidler JS, Duarte Macea D et al. Investigation of central nervous system dysfunction in chronic pelvic pain using magnetic resonance spectroscopy and noninvasive brain stimulation. Pain Pract. 15(5), 423–432 (2015).
    • 121 Fenton BW, Fanning J, Boggio PS, Fregni F. A pilot efficacy trial of tDCS for the treatment of refractory chronic pelvic pain. Brain Stimul. 2(2), 103–107 (2009).
    • 122 Nizard J, Raoul S, Nguyen JP, Lefaucheur JP. Invasive stimulation therapies for the treatment of refractory pain. Discov. Med. 14(77), 237–246 (2012).