We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Macrophages in cancer and infectious diseases: the ‘good’ and the ‘bad’

    Chiara Porta

    DiSCAFF, University of Piemonte Orientale A. Avogadro, Novara, Italy

    ,
    Elena Riboldi

    DiSCAFF, University of Piemonte Orientale A. Avogadro, Novara, Italy

    ,
    Maria Grazia Totaro

    Istituto Clinico Humanitas IRCCS, Rozzano, Italy

    ,
    Laura Strauss

    Istituto Clinico Humanitas IRCCS, Rozzano, Italy

    ,
    Antonio Sica

    DiSCAFF, University of Piemonte Orientale A. Avogadro, Novara, Italy

    Istituto Clinico Humanitas IRCCS, Rozzano, Italy

    &
    Alberto Mantovani

    † Author for correspondence

    Institute of General Pathology, University of Milan, Milan, Italy.

    Published Online:https://doi.org/10.2217/imt.11.116

    Macrophages are crucial orchestrators of host defence and tissue homeostasis. Macrophages are heterogeneous and plastic cells that in response to different microenvironmental signals can mount a broad spectrum of different programs of polarized activation. In different pathological contexts including cancer and infectious diseases, macrophages diversity and plasticity may act as a double-edged sword. The elucidation of the molecular mechanisms underlying macrophages recruitment and functional activation allows the identification of valuable targets for the development of innovative therapeutic approaches.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Gordon S. Elie Metchnikoff: father of natural immunity. Eur. J. Immunol.38(12),3257–3264 (2008).
    • Podolsky SH, Tauber AI. Darwinism and antibody diversity: a historical perspective. Res. Immunol.147(4),199–202 (1996).
    • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol.8(12),958–969 (2008).
    • Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol.27,451–483 (2009).
    • Pollard JW. Trophic macrophages in development and disease. Nat. Rev. Immunol.9(4),259–270 (2009).
    • Stout RD, Watkins SK, Suttles J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J. Leukoc. Biol.86(5),1105–1109 (2009).
    • Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol.11(10),889–896 (2010).▪ Emphasizes macrophage plasticity by discussing the bidirectional interaction between macrophages and lymphocytes in cancer.
    • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science327(5966),656–661 (2010).▪ Highlights that circulating monocytes consist of two subsets with distinct phenotypical and functional features.
    • Yona S, Jung S. Monocytes: subsets, origins, fates and functions. Curr. Opin Hematol.17(1),53–59 (2010).
    • 10  Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity19(1),71–82 (2003).
    • 11  Pucci F, Venneri MA, Biziato D et al. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood ‘resident’ monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood114(4),901–914 (2009).▪ Tie2-expressing monocytes (TEMs) are profiled by microarray analysis. The authors suggest TEMs as a new subset of proangiogenic monocytes committed to development angiogenesis and co-opted by tumors.
    • 12  Coffelt SB, Tal AO, Scholz A et al. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res.70(13),5270–5280 (2010).
    • 13  Robbins CS, Swirski FK. The multiple roles of monocyte subsets in steady state and inflammation. Cell Mol. Life Sci.67(16),2685–93 (2010).
    • 14  Le Borgne M, Etchart N, Goubier A et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity24(2),191–201 (2006).
    • 15  Combadiere C, Potteaux S, Rodero M et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation117(13),1649–1657 (2008).
    • 16  Auffray C, Fogg D, Garfa M et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science317(5838),666–670 (2007).
    • 17  Jakubzick C, Tacke F, Ginhoux F et al. Blood monocyte subsets differentially give rise to CD103+ and CD103- pulmonary dendritic cell populations. J. Immunol.180(5),3019–3027 (2008).
    • 18  De Palma M, Murdoch C, Venneri MA, Naldini L, Lewis CE. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol.28(12),519–524 (2007).
    • 19  Welford AF, Biziato D, Coffelt SB et al. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J. Clin. Invest.121(5),1969–1973 (2011).▪▪ Demonstrates that CXCL12/CXCR4 axis drives TEMs recruitment in tumors thereby imparing the therapeutic efficacy of antiangiogenic drugs.
    • 20  De Palma M, Venneri MA, Galli R et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell8(3),211–226 (2005).▪ Identifies TEMs as a new subset of tumor associated monocytes with strong proangiogenic activity.
    • 21  Murdoch C, Tazzyman S, Webster S, Lewis CE. Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J. Immunol.178(11),7405–7411 (2007).
    • 22  Venneri MA, De Palma M, Ponzoni M et al. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood109(12),5276–5285 (2007).
    • 23  Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol.23(11),549–555 (2002).▪ The first review on macrophages plasticity suggesting M1 and M2 as the extremes of a continuum of different states of polarized activation.
    • 24  Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol.5(12),953–964 (2005).
    • 25  Gratchev A, Schledzewski K, Guillot P, Goerdt S. Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing. Skin Pharmacol. Appl. Skin Physiol.14(5),272–279 (2001).
    • 26  Bystrom J, Evans I, Newson J et al. Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood112(10),4117–4127 (2008).
    • 27  Szekanecz Z, Koch AE. Macrophages and their products in rheumatoid arthritis. Curr. Opin Rheumatol.19(3),289–295 (2007).
    • 28  Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J. Pathol.214(2),161–178 (2008).
    • 29  Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell140(6),883–899 (2010).
    • 30  Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest.117(1),175–184 (2007).
    • 31  Zeyda M, Stulnig TM. Adipose tissue macrophages. Immunol. Lett.112(2),61–67 (2007).
    • 32  Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity32(5),593–604 (2010).
    • 33  Mantovani A. Cancer: inflaming metastasis. Nature457(7225),36–37 (2009).
    • 34  Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell144(5),646–674 (2011).
    • 35  Vannucci L, Stepankova R, Grobarova V et al. Colorectal carcinoma: Importance of colonic environment for anti-cancer response and systemic immunity. J. Immunotoxicol.6(4),217–226 (2009).
    • 36  Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature454(7203),436–444 (2008).▪ Examines the molecular mechanisms linking inflammation with cancer.
    • 37  Porta C, Riboldi E, Sica A. Mechanisms linking pathogens-associated inflammation and cancer. Cancer Lett.305(2),250–262 (2011).
    • 38  Bingle L, Brown NJ, Lewis CE. The role of tumor-associated macrophages in tumor progression: implications for new anticancer therapies. J. Pathol.196(3),254–265 (2002).
    • 39  Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell141(1),39–51 (2010).
    • 40  Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest.117(5),1155–1166 (2007).
    • 41  Bottazzi B, Polentarutti N, Acero R et al. Regulation of the macrophage content of neoplasms by chemoattractants. Science220(4593),210–212 (1983).
    • 42  Bottazzi B, Walter S, Govoni D, Colotta F, Mantovani A. Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J. Immunol.148(4),1280–1285 (1992).
    • 43  Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin Immunol.22(2),231–237 (2010).
    • 44  Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R. The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev.21(1),27–39 (2010).
    • 45  Zhang J, Sud S, Mizutani K, Gyetko MR, Pienta KJ. Activation of urokinase plasminogen activator and its receptor axis is essential for macrophage infiltration in a prostate cancer mouse model. Neoplasia13(1),23–30 (2011).
    • 46  Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat. Rev. Cancer9(4),239–252 (2009).
    • 47  Byrne SN, Knox MC, Halliday GM. TGFβ is responsible for skin tumor infiltration by macrophages enabling the tumors to escape immune destruction. Immunol. Cell Biol.86(1),92–97 (2008).
    • 48  Jin G, Kawsar HI, Hirsch SA et al. An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PLoS ONE5(6),e10993 (2010).▪ Demonstrates β-defensin-3 as a new monocyte chemoattractant in gastric cancer.
    • 49  Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell7(3),211–217 (2005).
    • 50  Pikarsky E, Porat RM, Stein I et al. NF-κB functions as a tumor promoter in inflammation-associated cancer. Nature431(7007),461–466 (2004).
    • 51  Greten FR, Karin M. The IKK/NF-κB activation pathway-a target for prevention and treatment of cancer. Cancer Lett.206(2),193–199 (2004).
    • 52  Hagemann T, Wilson J, Burke F et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J. Immunol.176(8),5023–5032 (2006).
    • 53  Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell17(2),135–147 (2010).
    • 54  Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE4(11),e7965 (2009).
    • 55  Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J. Immunol.179(2),977–983 (2007).
    • 56  De Nardo DG, Barreto JB, Andreu P et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell16(2),91–102 (2009).
    • 57  Andreu P, Johansson M, Affara NI et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell17(2),121–134 (2010).
    • 58  De Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell7(5),411–423 (2005).
    • 59  Wong SC, Puaux AL, Chittezhath M et al. Macrophage polarization to a unique phenotype driven by B cells. Eur. J. Immunol.40(8),2296–2307 (2010).
    • 60  Dinapoli MR, Calderon CL, Lopez DM. The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. J. Exp. Med.183(4),1323–1329 (1996).
    • 61  Sica A, Saccani A, Bottazzi B et al. Autocrine production of IL-10 mediates defective IL-12 production and NF-κ B activation in tumor-associated macrophages. J. Immunol.164(2),762–767 (2000).
    • 62  Saccani A, Schioppa T, Porta C et al. p50 nuclear factor-κB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res.66(23),11432–11440 (2006).
    • 63  Ojalvo LS, King W, Cox D, Pollard JW. High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am. J. Pathol.174(3),1048–1064 (2009).
    • 64  Budhu A, Forgues M, Ye QH et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell10(2),99–111 (2006).
    • 65  Galon J, Costes A, Sanchez-Cabo F et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science313(5795),1960–1964 (2006).
    • 66  Kurahara H, Shinchi H, Mataki Y et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J. Surg. Res.167(2),E211–E219 (2009).
    • 67  Steidl C, Lee T, Shah SP et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N. Engl. J. Med.362(10),875–885 (2010).▪ Demonstrates that tumor-associated macrophages have prognostic sugnificance in Hodgkin’s disease and calls for using tumor-associated macrophages in Hodgkin’s disease classification and treatment.
    • 68  Duluc D, Delneste Y, Tan F et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood110(13),4319–4330 (2007).
    • 69  Roca H, Varsos Z, Pienta KJ. CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin upregulation. J. Biol. Chem.283(36),25057–25073 (2008).
    • 70  Fridlender ZG, Kapoor V, Buchlis G et al. Monocyte chemoattractant protein-1 blockade inhibits lung cancer tumor growth by altering macrophage phenotype and activating CD8+ cells. Am. J. Respir. Cell Mol. Biol.44(2),230–237 (2011).
    • 71  Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol.8(7),533–544 (2008).
    • 72  Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol.177(10),7303–7311 (2006).
    • 73  Solinas G, Schiarea S, Liguori M et al. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J. Immunol.185(1),642–652 (2010).
    • 74  Banerjee S, Lin CF, Skinner KA et al. Heat shock protein 27 differentiates tolerogenic macrophages that may support human breast cancer progression. Cancer Res.71(2),318–327 (2011).
    • 75  Lepique AP, Daghastanli KR, Cuccovia IM, Villa LL. HPV16 tumor-associated macrophages suppress antitumor T cell responses. Clin. Cancer Res.15(13),4391–4400 (2009).
    • 76  Coffelt SB, Chen YY, Muthana M et al. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J. Immunol.186(7),4183–4190 (2011).
    • 77  Gallina G, Dolcetti L, Serafini P et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J. Clin. Invest.116(10),2777–2790 (2006).
    • 78  Lindenberg JJ, Fehres CM, Van Cruijsen H, Oosterhoff D, De Gruijl TD. Cross-talk between tumor and myeloid cells: how to tip the balance in favor of antitumor immunity. Immunotherapy3(1),77–96 (2011).
    • 79  Lin EY, Li JF, Gnatovskiy L et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res.66(23),11238–11246 (2006).
    • 80  Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res.56(20),4625–4629 (1996).
    • 81  Nishie A, Ono M, Shono T et al. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin. Cancer Res.5(5),1107–1113 (1999).
    • 82  Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N, Nomura Y. Prognostic value of tumor-associated macrophage count in human bladder cancer. Int. J. Urol.7(7),263–269 (2000).
    • 83  Koide N, Nishio A, Sato T, Sugiyama A, Miyagawa S. Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus. Am. J. Gastroenterol.99(9),1667–1674 (2004).
    • 84  Toge H, Inagaki T, Kojimoto Y, Shinka T, Hara I. Angiogenesis in renal cell carcinoma: the role of tumor-associated macrophages. Int. J. Urol.16(10),801–807 (2009).
    • 85  De Palma M, Venneri MA, Roca C, Naldini L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med.9(6),789–795 (2003).
    • 86  Fantin A, Vieira JM, Gestri G et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood116(5),829–840 (2010).▪▪ TEMs have a crucial role in development angiogenesis by promoting vascular anastomosis.
    • 87  Rolny C, Mazzone M, Tugues S et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell19(1),31–44 (2011).▪▪ Provocative study showing that tumor-associated macrophages support the construction of an abnormal vasculature.
    • 88  Wyckoff JB, Wang Y, Lin EY et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res.67(6),2649–2656 (2007).
    • 89  Robinson BD, Sica GL, Liu YF et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin. Cancer Res.15(7),2433–2441 (2009).
    • 90  Qian B, Deng Y, Im JH et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE4(8),e6562 (2009).
    • 91  Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol.8(12),1369–1375 (2006).
    • 92  Hiratsuka S, Watanabe A, Sakurai Y et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat. Cell Biol.10(11),1349–1355 (2008).▪▪ Highlights the S100A8/S100A9- serum amyloid A3-TLR4 as a crucial circuit underlying macrophages activation and premetastic niches creation.
    • 93  Said N, Smith S, Sanchez-Carbayo M, Theodorescu D. Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer. J. Clin. Invest.121(1),132–147 (2011).▪▪ Demonstrates that early recruitment of macrophages in the lungs by the endothelin-1/endothelin-1 receptor axis is an essential event for metastatic lung colonization.
    • 94  Kaufmann SH. Robert Koch, the Nobel Prize, and the ongoing threat of tuberculosis. N. Engl. J. Med.353(23),2423–6 (2005).
    • 95  Cooper AM. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol.27,393–422 (2009).
    • 96  Harding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat. Rev. Microbiol.8(4),296–307 (2010).
    • 97  Flannagan RS, Cosio G, Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol.7(5),355–366 (2009).
    • 98  Liu PT, Modlin RL. Human macrophage host defense against Mycobacterium tuberculosis. Curr. Opin Immunol.20(4),371–376 (2008).
    • 99  Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol.10(9),943–948 (2009).
    • 100  Liu PT, Stenger S, Li H et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science311(5768),1770–1173 (2006).
    • 101  Yadav M, Schorey JS. The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood108(9),3168–3175 (2006).
    • 102  Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J. Immunol.181(6),3733–3739 (2008).
    • 103  Flynn JL, Chan J, Triebold KJ et al. An essential role for interferon γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med.178(6),2249–5224 (1993).▪▪ Demonstrates the essential role of IFN-γ in resistance to Mycobacterium tuberculosis infection.
    • 104  Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG, Mycobacterium tuberculosis survival in infected macrophages. Cell119(6),753–766 (2004).
    • 105  Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like receptors control autophagy. EMBO J.27(7),1110–2111 (2008).
    • 106  Russell DG. Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol. Rev.240(1),252–268 (2011).
    • 107  Pathak SK, Basu S, Basu KK et al. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat. Immunol.8(6),610–618 (2007).
    • 108  Ting LM, Kim AC, Cattamanchi A, Ernst JD. Mycobacterium tuberculosis inhibits IFN-γ transcriptional responses without inhibiting activation of STAT1. J. Immunol.163(7),3898–3906 (1999).
    • 109  Nagabhushanam V, Solache A, Ting LM, Escaron CJ, Zhang JY, Ernst JD. Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-γ. J. Immunol.171(9),4750–4757 (2003).
    • 110  Rajaram MV, Brooks MN, Morris JD, Torrelles JB, Azad AK, Schlesinger LS. Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor γ linking mannose receptor recognition to regulation of immune responses. J. Immunol.185(2),929–942 (2010).
    • 111  Schreiber T, Ehlers S, Heitmann L et al. Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity. J. Immunol.183(2),1301–1312 (2009).
    • 112  Harris J, De Haro SA, Master SS et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity27(3),505–517 (2007).
    • 113  Pieters J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe3(6),399–407 (2008).
    • 114  Peters W, Ernst JD. Mechanisms of cell recruitment in the immune response to Mycobacterium tuberculosis. Microbes Infect.5(2),151–158 (2003).
    • 115  Algood HM, Chan J, Flynn JL. Chemokines and tuberculosis. Cytokine Growth Factor Rev.14(6),467–477 (2003).▪ Describes chemokine involvement in the immune response against M. tuberculosis.
    • 116  Peters W, Scott HM, Chambers HF, Flynn JL, Charo IF, Ernst JD. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA98(14),7958–7963 (2001).▪▪ Demonstrates the requirement for CCR2 in the initial immune reponse and control of infection with M. tuberculosis.
    • 117  Lu B, Rutledge BJ, Gu L et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med.187(4),601–608 (1998).
    • 118  Roach DR, Bean AG, Demangel C, France MP, Briscoe H, Britton WJ. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J. Immunol.168(9),4620–4627 (2002).
    • 119  Flynn JL, Goldstein MM, Chan J et al. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity2(6),561–572 (1995).
    • 120  Keane J, Gershon S, Wise RP et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med.345(15),1098–1104 (2001).
    • 121  Leemans JC, Florquin S, Heikens M, Pals ST, van Der Neut R, Van Der Poll T. CD44 is a macrophage binding site for Mycobacterium tuberculosis that mediates macrophage recruitment and protective immunity against tuberculosis. J. Clin. Invest.111(5),681–689 (2003).
    • 122  Taylor JL, Hattle JM, Dreitz SA et al. Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection. Infect. Immun.74(11),6135–6144 (2006).
    • 123  Carter CA, Ehrlich LS. Cell biology of HIV-1 infection of macrophages. Annu. Rev. Microbiol.62,425–443 (2008).
    • 124  Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol.17,657–700 (1999).
    • 125  Herbein G, Varin A. The macrophage in HIV-1 infection: from activation to deactivation? Retrovirology7,33 (2010).
    • 126  Wahl SM, Greenwell-Wild T, Hale-Donze H, Moutsopoulos N, Orenstein JM. Permissive factors for HIV-1 infection of macrophages. J. Leukoc. Biol.68(3),303–310 (2000).
    • 127  Orenstein JM, Fox C, Wahl SM. Macrophages as a source of HIV during opportunistic infections. Science276(5320),1857–1861 (1997).
    • 128  Hale-Donze H, Greenwell-Wild T, Mizel D et al. Mycobacterium avium complex promotes recruitment of monocyte hosts for HIV-1 and bacteria. J. Immunol.169(7),3854–3862 (2002).
    • 129  Cotter R, Williams C, Ryan L et al. Fractalkine (CX3CL1) and brain inflammation: Implications for HIV-1-associated dementia. J. Neurovirol.8(6),585–598 (2002).
    • 130  Garcia LS. Classification of human parasites. Clin. Infect. Dis.25(1),21–23 (1997).
    • 131  Raes G, Beschin A, Ghassabeh GH, De Baetselier P. Alternatively activated macrophages in protozoan infections. Curr. Opin Immunol.19(4),454–459 (2007).
    • 132  Denkers EY, Butcher BA. Sabotage and exploitation in macrophages parasitized by intracellular protozoans. Trends Parasitol.21(1),35–41 (2005).
    • 133  Holscher C, Arendse B, Schwegmann A, Myburgh E, Brombacher F. Impairment of alternative macrophage activation delays cutaneous leishmaniasis in nonhealing BALB/c mice. J. Immunol.176(2),1115–1121 (2006).
    • 134  Iniesta V, Gomez-Nieto LC, Corraliza I. The inhibition of arginase by N(omega)-hydroxy-l-arginine controls the growth of Leishmania inside macrophages. J. Exp. Med.193(6),777–784 (2001).
    • 135  Kreider T, Anthony RM, Urban JF Jr, Gause WC. Alternatively activated macrophages in helminth infections. Curr. Opin Immunol.19(4),448–453 (2007).
    • 136  Porta C, Rimoldi M, Raes G et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proc. Natl Acad. Sci. USA106(35),14978–14983 (2009).
    • 137  Pesce JT, Ramalingam TR, Mentink-Kane MM et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog.5(4),e1000371 (2009).
    • 138  Lee CG. Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling. Yonsei Med. J.50(1),22–30 (2009).
    • 139  Anthony RM, Rutitzky LI, Urban JF Jr, Stadecker MJ, Gause WC. Protective immune mechanisms in helminth infection. Nat. Rev. Immunol.7(12),975–987 (2007).
    • 140  Weng M, Huntley D, Huang IF et al. Alternatively activated macrophages in intestinal helminth infection: effects on concurrent bacterial colitis. J. Immunol.179(7),4721–4731 (2007).
    • 141  Teixeira MJ, Teixeira CR, Andrade BB, Barral-Netto M, Barral A. Chemokines in host-parasite interactions in leishmaniasis. Trends Parasitol.22(1),32–40 (2006).
    • 142  Van Zandbergen G, Klinger M, Mueller A et al. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J. Immunol.173(11),6521–6525 (2004).
    • 143  Ritter U, Moll H. Monocyte chemotactic protein-1 stimulates the killing of Leishmania major by human monocytes, acts synergistically with IFN-γ and is antagonized by IL-4. Eur. J. Immunol.30(11),3111–3120 (2000).
    • 144  Robben PM, LaRegina M, Kuziel WA, Sibley LD. Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. J. Exp. Med.201(11),1761–1769 (2005).
    • 145  Pearce EJ, MacDonald AS. The immunobiology of schistosomiasis. Nat. Rev. Immunol.2(7),499–511 (2002).
    • 146  Lukacs NW, Kunkel SL, Strieter RM, Warmington K, Chensue SW. The role of macrophage inflammatory protein 1 α in Schistosoma mansoni egg-induced granulomatous inflammation. J. Exp. Med.177(6),1551–1559 (1993).
    • 147  Smith P, Fallon RE, Mangan NE et al. Schistosoma mansoni secretes a chemokine binding protein with anti-inflammatory activity. J. Exp. Med.202(10),1319–1325 (2005).
    • 148  Loberg RD, Ying C, Craig M et al. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res.67(19),9417–9424 (2007).▪ These preclinical studies [148–152] demonstrate that CCL2 inhibitory approaches are able to reduce macrophages infiltration and tumor growth in different models of cancers.
    • 149  Mizutani K, Sud S, McGregor NA et al. The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia11(11),1235–1242 (2009).▪ These preclinical studies [148–152] demonstrate that CCL2 inhibitory approaches are able to reduce macrophages infiltration and tumor growth in different models of cancers.
    • 150  Fujimoto H, Sangai T, Ishii G et al. Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int. J. Cancer125(6),1276–1284 (2009).▪ These preclinical studies [148–152] demonstrate that CCL2 inhibitory approaches are able to reduce macrophages infiltration and tumor growth in different models of cancers.
    • 151  Lu X, Kang Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and Bone. J. Biol. Chem.284(42),29087–29096 (2009).▪ These preclinical studies [148–152] demonstrate that CCL2 inhibitory approaches are able to reduce macrophages infiltration and tumor growth in different models of cancers.
    • 152  Popivanova BK, Kostadinova FI, Furuichi K et al. Blockade of a chemokine, CCL2, reduces chronic colitis-associated carcinogenesis in mice. Cancer Res.69(19),7884–7892 (2009).▪ These preclinical studies [148–152] demonstrate that CCL2 inhibitory approaches are able to reduce macrophages infiltration and tumor growth in different models of cancers.
    • 153  Zhang J, Patel L, Pienta KJ. Targeting chemokine (C-C motif) ligand 2 (CCL2) as an example of translation of cancer molecular biology to the clinic. Prog. Mol. Biol. Transl Sci.95,31–53 (2010).
    • 154  Struthers M, Pasternak A. CCR2 antagonists. Curr Top. Med. Chem.10(13),1278–1298 (2010).
    • 155  Mantovani A. The chemokine system: redundancy for robust outputs. Immunol. Today20(6),254–257 (1999).
    • 156  Kuritzkes DR. HIV-1 entry inhibitors: an overview. Curr. Opin HIV AIDS4(2),82–87 (2009).
    • 157  Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J. Exp. Med.185(4),621–8 (1997).
    • 158  Steen A, Schwartz TW, Rosenkilde MM. Targeting CXCR4 in HIV cell-entry inhibition. Mini Rev Med Chem (2010) (Epub ahead of print).
    • 159  Schioppa T, Uranchimeg B, Saccani A et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med.198(9),1391–402 (2003).
    • 160  Kryczek I, Wei S, Keller E, Liu R, Zou W. Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am. J. Physiol. Cell Physiol.292(3),C987–C995 (2007).
    • 161  Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest.120(3),694–705 (2010).▪▪ These studies [161–163] show that macrophages are crucial promoters of tumor relapse and suggest different strategies to inhibit macrophages recruitment in postirradiated neoplastic tissues.
    • 162  Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK, Duda DG. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res.70(14),5679–5685 (2010).▪▪ These studies [161–163] show that macrophages are crucial promoters of tumor relapse and suggest different strategies to inhibit macrophages recruitment in postirradiated neoplastic tissues.
    • 163  Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM. Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc. Natl Acad. Sci. USA107(18),8363–8368 (2010).▪▪ These studies [161–163] show that macrophages are crucial promoters of tumor relapse and suggest different strategies to inhibit macrophages recruitment in postirradiated neoplastic tissues.
    • 164  Allavena P, Signorelli M, Chieppa M et al. Anti-inflammatory properties of the novel antitumor agent Yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production. Cancer Res.65(7),2964–2971 (2005).
    • 165  Sessa C, De Braud F, Perotti A et al. Trabectedin for women with ovarian carcinoma after treatment with platinum and taxanes fails. J. Clin. Oncol.23(9),1867–1874 (2005).
    • 166  Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J. Leukoc. Biol.86(5),1065–1073 (2009).
    • 167  D’Incalci M, Galmarini CM. A review of trabectedin (ET-743): a unique mechanism of action. Mol. Cancer Ther.9(8),2157–2163 (2010).
    • 168  Germano G, Frapolli R, Simone M et al. Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Res.70(6),2235–2244 (2010).
    • 169  Carter NJ, Keam SJ. Trabectedin: a review of its use in soft tissue sarcoma and ovarian cancer. Drugs70(3),355–376 (2010).
    • 170  Rogers MJ, Crockett JC, Coxon FP, Monkkonen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone49(1),34–41 (2011).
    • 171  Coleman RE, McCloskey EV. Bisphosphonates in oncology. Bone49(1),71–76 (2011).
    • 172  Clezardin P, Benzaid I, Croucher PI. Bisphosphonates in preclinical bone oncology. Bone49(1),66–70 (2011).
    • 173  Gnant M, Mlineritsch B, Schippinger W et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N. Engl. J. Med.360(7),679–691 (2009).
    • 174  Morgan G, Lipton A. Antitumor effects and anticancer applications of bisphosphonates. Semin. Oncol.37(Suppl. 2),S30–S40 (2010).
    • 175  Zarogoulidis K, Boutsikou E, Zarogoulidis P et al. The impact of zoledronic acid therapy in survival of lung cancer patients with bone metastasis. Int. J. Cancer125(7),1705–1709 (2009).
    • 176  Rosen LS, Gordon D, Tchekmedyian NS et al. Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with nonsmall cell lung carcinoma and other solid tumors: a randomized, Phase III, double-blind, placebo-controlled trial. Cancer100(12),2613–2621 (2004).
    • 177  Zaghloul MS, Boutrus R, El-Hossieny H, Kader YA, El-Attar I, Nazmy M. A prospective, randomized, placebo-controlled trial of zoledronic acid in bony metastatic bladder cancer. Int. J. Clin. Oncol.15(4),382–389 (2010).
    • 178  Saad F, Gleason DM, Murray R et al. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J. Natl Cancer Inst.96(11),879–882 (2004).
    • 179  Owais M, Gupta CM. Targeted drug delivery to macrophages in parasitic infections. Curr. Drug Deliv.2(4),311–318 (2005).
    • 180  Gazzaniga S, Bravo AI, Guglielmotti A et al. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J. Invest. Dermatol.127(8),2031–2041 (2007).
    • 181  Kelly C, Jefferies C, Cryan SA. Targeted liposomal drug delivery to monocytes and macrophages. J. Drug Deliv. 2011:727241 (2011).
    • 182  Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. Targeting to macrophages: role of physicochemical properties of particulate carriers – liposomes and microspheres – on the phagocytosis by macrophages. J. Control. Release79(1–3),29–40 (2002).
    • 183  Foged C, Arigita C, Sundblad A, Jiskoot W, Storm G, Frokjaer S. Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine22(15–16),1903–1913 (2004).
    • 184  Irache JM, Salman HH, Gamazo C, Espuelas S. Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv.5(6),703–724 (2008).
    • 185  De Palma M, Mazzieri R, Politi LS et al. Tumor-targeted interferon-α delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell14(4),299–311 (2008).
    • 186  De Palma M, Naldini L. Tie2-expressing monocytes (TEMs): novel targets and vehicles of anticancer therapy? Biochem. Biophys. Acta1796(1),5–10 (2009).
    • 187  Antonelli LR, Gigliotti Rothfuchs A, Goncalves R et al. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J. Clin. Invest.120(5),1674–1682 (2010).
    • 188  Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res.65(8),3437–3446 (2005).
    • 189  Coscia M, Quaglino E, Iezzi M et al. Zoledronic acid repolarizes tumor-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J. Cell Mol. Med.14(12),2803–2815 (2009).
    • 190  Duluc D, Corvaisier M, Blanchard S et al. Interferon-γ reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int. J. Cancer125(2),367–373 (2009).
    • 191  Ostrand-Rosenberg S, Grusby MJ, Clements VK. Cutting edge: STAT6-deficient mice have enhanced tumor immunity to primary and metastatic mammary carcinoma. J. Immunol.165(11),6015–6019 (2000).
    • 192  Kortylewski M, Kujawski M, Wang T et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med.11(12),1314–1321 (2005).
    • 193  Hagemann T, Biswas SK, Lawrence T, Sica A, Lewis CE. Regulation of macrophage function in tumors: the multifaceted role of NF-κB. Blood113(14),3139–3146 (2009).
    • 194  Beatty GL, Chiorean EG, Fishman MP et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science331(6024),1612–1616 (2011).▪▪ Remarkable study that demonstrates that CD40 agonists induce M1 macrophage activation and pancreatic tumors inhibition in both mice and humans.
    • 195  Weiss JM, Back TC, Scarzello AJ et al. Successful immunotherapy with IL-2/anti-CD40 induces the chemokine-mediated mitigation of an immunosuppressive tumor microenvironment. Proc. Natl Acad. Sci. USA106(46),19455–60 (2009).
    • 196  Weiss JM, Ridnour LA, Back T et al. Macrophage-dependent nitric oxide expression regulates tumor cell detachment and metastasis after IL-2/anti-CD40 immunotherapy. J. Exp. Med.207(11),2455–67 (2010).