We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Role and future applications of extracellular vesicles in HIV-1 pathogenesis

    Audrey Hubert

    Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, Québec City, Québec, Canada

    Département de Microbiologie-Infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada

    ,
    Benoit Barbeau

    Département des Sciences Biologiques and Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, Québec, Canada

    ,
    Caroline Subra

    Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, Québec City, Québec, Canada

    Département de Microbiologie-Infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada

    ,
    Luc Bissonnette

    Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, Québec City, Québec, Canada

    Département de Microbiologie-Infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada

    &
    Caroline Gilbert

    *Author for correspondence:

    E-mail Address: caroline.gilbert@crchudequebec.ulaval.ca

    Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec, Québec City, Québec, Canada

    Département de Microbiologie-Infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada

    Published Online:https://doi.org/10.2217/fvl.15.11

    ABSTRACT 

    Extracellular vesicles (EVs) are released naturally in vivo and in vitro from cells and tissues into biological fluids such as plasma, urine, saliva and amniotic fluid, and into culture medium. EV may contain proteins, lipids, mRNA and miRNA significant of the physiological status or of their cellular origin and affect the functions of neighboring cells. The characterization of EVs present in HIV-1-infected individuals provides insight into pathogenesis, inflammation and disease progression. However, the potential of EVs to become reliable research or diagnostic tools is currently limited by the difficulty of distinguishing apoptotic and plasma membrane EVs, exosomes and virions. In spite of this methodological limitation, EVs are expected to become highly useful tools in biomedicine and uncover a research area expected to lead to innovative R&D.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Douglas WW, Nagasawa J, Schulz RA. Coated microvesicles in neuro-secretory terminals of posterior pituitary glands shed their coats to become smooth ‘synaptic’ vesicles. Nature 232(5309), 340–341 (1971).
    • 2 Trams EG, Lauter CJ, Salem N Jr, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645(1), 63–70 (1981).
    • 3 Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262(19), 9412–9420 (1987).
    • 4 Taylor DD, Homesley HD, Doellgast GJ. Binding of specific peroxidase-labeled antibody to placental-type phosphatase on tumor-derived membrane fragments. Cancer Res. 40(11), 4064–4069 (1980).
    • 5 Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9(21), 4997–5000 (2009).
    • 6 Raposo G, Nijman HW, Stoorvogel W et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183(3), 1161–1172 (1996).
    • 7 Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9(6), 654–659 (2007).
    • 8 Zitvogel L, Regnault A, Lozier A et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4(5), 594–600 (1998).
    • 9 Dalton AJ. Microvesicles and vesicles of multivesicular bodies versus ‘virus-like’ particles. J. Natl Cancer Inst. 54(5), 1137–1148 (1975).
    • 10 Nguyen DG, Booth A, Gould SJ, Hildreth JE. Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J. Biol. Chem. 278(52), 52347–52354 (2003).• First characterization of exosomes and HIV-1.
    • 11 ExoCarta. www.exocarta.org/.
    • 12 Exosomics Siena SpA. www.exosomics.eu.
    • 13 HansaBioMed. www.hansabiomed.eu.
    • 14 Exosome Diagnostics. www.exosomedx.com.
    • 15 Caris Life Sciences. www.carislifesciences.com.
    • 16 Aethlon Medical (Exosome Sciences). www.aethlonmedical.com.
    • 17 Systembio. www.systembio.com.
    • 18 Invitrogen. www.lifetechnologies.com.
    • 19 Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 14(3), 195–208 (2014).•• Excellent review concerning extracellular vesicles.
    • 20 Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9(8), 581–593 (2009).
    • 21 Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int. J. Mol. Sci. 14(3), 5338–5366 (2013).
    • 22 Pant S, Hilton H, Burczynski ME. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem. Pharmacol. 83(11), 1484–1494 (2012).
    • 23 Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820(7), 940–948 (2012).
    • 24 Meckes DG Jr, Gunawardena HP, Dekroon RM et al. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc. Natl Acad. Sci. USA 110(31), E2925–E2933 (2013).
    • 25 Pegtel DM, Cosmopoulos K, Thorley-Lawson DA et al. Functional delivery of viral miRNAs via exosomes. Proc. Natl Acad. Sci. USA 107(14), 6328–6333 (2010).• First demonstration showing that exosomes can deliver functional miRNA to bystander cells.
    • 26 Ramakrishnaiah V, Thumann C, Fofana I et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc. Natl Acad. Sci. USA 110(32), 13109–13113 (2013).
    • 27 Feng Z, Hensley L, Mcknight KL et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496(7445), 367–371 (2013).
    • 28 Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G. The biogenesis and functions of exosomes. Traffic 3(5), 321–330 (2002).
    • 29 Izquierdo-Useros N, Puertas MC, Borras FE, Blanco J, Martinez-Picado J. Exosomes and retroviruses: the chicken or the egg? Cell Microbiol. 13(1), 10–17 (2011).
    • 30 Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C. Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J. Immunol. Methods 338(1–2), 21–30 (2008).• Separation and purification of exosomes by velocity gradient and by immunocapture using antiacetylcholinesterase antibodies.
    • 31 Subra C, Burelout C, Proulx S, Simard S, Gilbert C. Elimination of exosomes increase in vitro infectivity of HIV-1: implications for CD4+ lymphocyte depletion in vivo. In: AIDS. InTech, NY, USA (2011).
    • 32 Lenassi M, Cagney G, Liao M et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11(1), 110–122 (2010).• First demonstration that exosomes can induce apoptosis and cellular activation on bystander cells, in the context of HIV-1 infection.
    • 33 Narayanan A, Iordanskiy S, Das R et al. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J. Biol. Chem. 288(27), 20014–20033 (2013).
    • 34 Arenaccio C, Chiozzini C, Columba-Cabezas S et al. Exosomes from human immunodeficiency virus type 1 (HIV-1)-infected cells license quiescent CD4+ T lymphocytes to replicate HIV-1 through a Nef- and ADAM17-dependent mechanism. J. Virol. 88(19), 11529–11539 (2014).
    • 35 Arenaccio C, Chiozzini C, Columba-Cabezas S, Manfredi F, Federico M. Cell activation and HIV-1 replication in unstimulated CD4+ T lymphocytes ingesting exosomes from cells expressing defective HIV-1. Retrovirology 11, 46 (2014).
    • 36 Subra C, Simard S, Mercier S et al. Dendritic cells pulsed with HIV-1 release exosomes that promote apoptosis in CD4+ T lymphocytes (2011). www.omicsonline.org/2155-9899/2155-9899-S7-001.digital/2155-9899-S7-001.html.
    • 37 Morita E, Sundquist WI. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004).
    • 38 Gould SJ, Hildreth JE, Booth AM. The evolution of alloimmunity and the genesis of adaptive immunity. Q. Rev. Biol. 79(4), 359–382 (2004).
    • 39 Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol. 172(6), 923–935 (2006).
    • 40 Derse D, Dorn PL, Levy L, Stephens RM, Rice NR, Casey JW. Characterization of equine infectious anemia virus long terminal repeat. J. Virol. 61(3), 743–747 (1987).
    • 41 Chaput N, Flament C, Viaud S et al. Dendritic cell derived-exosomes: biology and clinical implementations. J. Leukoc. Biol. 80(3), 471–478 (2006).
    • 42 Izquierdo-Useros N, Naranjo-Gomez M, Archer J et al. Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113(12), 2732–2741 (2009).• Description of similarity between HIV-1 and exosomes trafficking in mature dendritic cells.
    • 43 Thery C, Regnault A, Garin J et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147(3), 599–610 (1999).
    • 44 Thery C, Boussac M, Veron P et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166(12), 7309–7318 (2001).
    • 45 Izquierdo-Useros N, Naranjo-Gomez M, Erkizia I et al. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog. 6(3), e1000740 (2010).
    • 46 Wiley RD, Gummuluru S. Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc. Natl Acad. Sci. USA 103(3), 738–743 (2006).
    • 47 Imami N, Hardy G, Burton C et al. Immune responses and reconstitution in HIV-1 infected individuals: impact of anti-retroviral therapy, cytokines and therapeutic vaccination. Immunol. Lett. 79(1–2), 63–76 (2001).
    • 48 Haase AT. Early events in sexual transmission of HIV and SIV and opportunities for interventions. Annu. Rev. Med. 62, 127–139 (2011).
    • 49 Rosenberg ES, Billingsley JM, Caliendo AM et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 278(5342), 1447–1450 (1997).
    • 50 Guadalupe M, Reay E, Sankaran S et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 77(21), 11708–11717 (2003).
    • 51 Monteiro P, Gosselin A, Wacleche VS et al. Memory CCR6+CD4+ T cells are preferential targets for productive HIV type 1 infection regardless of their expression of integrin beta7. J. Immunol. 186(8), 4618–4630 (2011).
    • 52 Brenchley JM, Paiardini M, Knox KS et al. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 112(7), 2826–2835 (2008).
    • 53 Aggarwal S, Ghilardi N, Xie MH, De Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278(3), 1910–1914 (2003).
    • 54 Pelletier M, Maggi L, Micheletti A et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 115(2), 335–343 (2010).
    • 55 Chang TL, Vargas J Jr, Delportillo A, Klotman ME. Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J. Clin. Invest. 115(3), 765–773 (2005).
    • 56 Dobmeyer TS, Raffel B, Dobmeyer JM et al. Decreased function of monocytes and granulocytes during HIV-1 infection correlates with CD4 cell counts. Eur. J. Med. Res. 1(1), 9–15 (1995).
    • 57 Brenchley JM, Price DA, Douek DC. HIV disease: fallout from a mucosal catastrophe? Nat. Immunol. 7(3), 235–239 (2006).
    • 58 Shan L, Siliciano RF. Unraveling the relationship between microbial translocation and systemic immune activation in HIV infection. J. Clin. Invest. 124(6), 2368–2371 (2014).
    • 59 Marchetti G, Bellistri GM, Borghi E et al. Microbial translocation is associated with sustained failure in CD4+ T-cell reconstitution in HIV-infected patients on long-term highly active antiretroviral therapy. AIDS 22(15), 2035–2038 (2008).
    • 60 Blanchet F, Moris A, Mitchell JP, Piguet V. A look at HIV journey: from dendritic cells to infection spread in CD4+ T cells. Curr. Opin. HIV AIDS 6(5), 391–397 (2011).
    • 61 Patterson S, Knight SC. Susceptibility of human peripheral blood dendritic cells to infection by human immunodeficiency virus. J. Gen. Virol. 68(Pt 4), 1177–1181 (1987).
    • 62 Mcdonald D, Wu L, Bohks SM, Kewalramani VN, Unutmaz D, Hope TJ. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300(5623), 1295–1297 (2003).
    • 63 Lambert AA, Gilbert C, Richard M, Beaulieu AD, Tremblay MJ. The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways. Blood 112(4), 1299–1307 (2008).
    • 64 Klechevsky E, Flamar AL, Cao Y et al. Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood 116(10), 1685–1697 (2010).
    • 65 Raposo G, Moore M, Innes D et al. Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic 3(10), 718–729 (2002).
    • 66 Bodey B, Bodey B Jr, Kaiser HE. Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network. In Vivo 11(4), 351–370 (1997).
    • 67 Andre F, Chaput N, Schartz NE et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J. Immunol. 172(4), 2126–2136 (2004).
    • 68 Hsu DH, Paz P, Villaflor G et al. Exosomes as a tumor vaccine: enhancing potency through direct loading of antigenic peptides. J. Immunother. 26(5), 440–450 (2003).
    • 69 Quah B, O'neill HC. Review: the application of dendritic cell-derived exosomes in tumour immunotherapy. Cancer Biother. Radiopharm. 15(2), 185–194 (2000).
    • 70 Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).
    • 71 Groot F, Van Capel TM, Schuitemaker J, Berkhout B, De Jong EC. Differential susceptibility of naive, central memory and effector memory T cells to dendritic cell-mediated HIV-1 transmission. Retrovirology 3, 52 (2006).
    • 72 Segura E, Nicco C, Lombard B et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 106(1), 216–223 (2005).
    • 73 Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat. Immunol. 3(12), 1156–1162 (2002).
    • 74 Chatila TA, Williams CB. Regulatory T cells: exosomes deliver tolerance. Immunity 41(1), 3–5 (2014).
    • 75 Brenchley JM, Schacker TW, Ruff LE et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med. 200(6), 749–759 (2004).
    • 76 Schacker TW, Brenchley JM, Beilman GJ et al. Lymphatic tissue fibrosis is associated with reduced numbers of naive CD4+ T cells in human immunodeficiency virus type 1 infection. Clin. Vaccine Immunol. 13(5), 556–560 (2006).
    • 77 Doitsh G, Galloway NL, Geng X et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505(7484), 509–514 (2013).
    • 78 Gyorgy B, Szabo TG, Pasztoi M et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68(16), 2667–2688 (2011).
    • 79 Baur AS. HIV-Nef and AIDS pathogenesis: are we barking up the wrong tree? Trends Microbiol. 19(9), 435–440 (2011).
    • 80 Raymond AD, Campbell-Sims TC, Khan M et al. HIV type 1 Nef is released from infected cells in CD45+ microvesicles and is present in the plasma of HIV-infected individuals. AIDS Res. Hum. Retroviruses 27(2), 167–178 (2010).
    • 81 Abusamra AJ, Zhong Z, Zheng X et al. Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol. Dis. 35(2), 169–173 (2005).
    • 82 Konadu KA, Chu J, Huang MB et al. Association of cytokines with exosomes in the plasma of HIV-1-seropositive individuals. J. Infect. Dis. doi:10.1093/infdis/jiu676 (2014) (Epub ahead of print).
    • 83 Madison MN, Roller RJ, Okeoma CM. Human semen contains exosomes with potent anti-HIV-1 activity. Retrovirology 11(1), 102 (2014).
    • 84 Naslund TI, Paquin-Proulx D, Paredes PT, Vallhov H, Sandberg JK, Gabrielsson S. Exosomes from breast milk inhibit HIV-1 infection of dendritic cells and subsequent viral transfer to CD4+ T cells. AIDS 28(2), 171–180 (2014).
    • 85 Frleta D, Ochoa CE, Kramer HB et al. HIV-1 infection-induced apoptotic microparticles inhibit human DCs via CD44. J. Clin. Invest. 122(12), 4685–4697 (2012).
    • 86 Mercier SK, Donaghy H, Botting RA et al. The microvesicle component of HIV-1 inocula modulates dendritic cell infection and maturation and enhances adhesion to and activation of T lymphocytes. PLoS Pathog. 9(10), e1003700 (2013).
    • 87 Kadiu I, Narayanasamy P, Dash PK, Zhang W, Gendelman HE. Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. J. Immunol. 189(2), 744–754 (2012).
    • 88 Admyre C, Johansson SM, Paulie S, Gabrielsson S. Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur. J. Immunol. 36(7), 1772–1781 (2006).
    • 89 Lattanzi L, Federico M. A strategy of antigen incorporation into exosomes: comparing cross-presentation levels of antigens delivered by engineered exosomes and by lentiviral virus-like particles. Vaccine 30(50), 7229–7237 (2012).
    • 90 Nanjundappa RH, Wang R, Xie Y, Umeshappa CS, Xiang J. Novel CD8+ T cell-based vaccine stimulates Gp120-specific CTL responses leading to therapeutic and long-term immunity in transgenic HLA-A2 mice. Vaccine 30(24), 3519–3525 (2012).
    • 91 Nanjundappa RH, Wang R, Xie Y et al. GP120-specific exosome-targeted T cell-based vaccine capable of stimulating DC- and CD4(+) T-independent CTL responses. Vaccine 29(19), 3538–3547 (2011).
    • 92 Ohtsuka Y, Sanderson IR. Transforming growth factor-beta: an important cytokine in the mucosal immune response. Curr. Opin. Gastroenterol. 16(6), 541–545 (2000).
    • 93 Nakae S, Iwakura Y, Suto H, Galli SJ. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J. Leukoc. Biol. 81(5), 1258–1268 (2007).
    • 94 Seddiki N, Brezar V, Ruffin N, Levy Y, Swaminathan S. Role of miR-155 in the regulation of lymphocyte immune function and disease. Immunology 142(1), 32–38 (2013).
    • 95 Lu LF, Thai TH, Calado DP et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30(1), 80–91 (2009).
    • 96 Koito A, Ikeda T. Intrinsic immunity against retrotransposons by APOBEC cytidine deaminases. Front. Microbiol. 4, 28 (2013).
    • 97 Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898), 646–650 (2002).• Identification of APOBEC3G.
    • 98 Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424(6944), 94–98 (2003).
    • 99 Khatua AK, Taylor HE, Hildreth JE, Popik W. Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. J. Virol. 83(2), 512–521 (2009).
    • 100 Khatua AK, Taylor HE, Hildreth JE, Popik W. Inhibition of LINE-1 and Alu retrotransposition by exosomes encapsidating APOBEC3G and APOBEC3F. Virology 400(1), 68–75 (2010).
    • 101 Balaj L, Lessard R, Dai L et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011).
    • 102 Wurdinger T, Gatson NN, Balaj L, Kaur B, Breakefield XO, Pegtel DM. Extracellular vesicles and their convergence with viral pathways. Adv. Virol. 2012, 767694 (2012).